
The (K, k)-Capacitated Spanning Tree Problem

Esther M. Arkin⋆, Nili Guttmann-Beck⋆⋆, and Refael Hassin⋆ ⋆ ⋆

No Institute Given

Abstract. This paper considers a generalization of the capacitated span-
ning tree, in which some of the nodes have capacity K, and the others
have capacity k < K. We prove that the problem can be approximated
within a constant factor, and present better approximations when k is 1
or 2.

1 Introduction

Let G = (V,E) be an undirected graph with nonnegative edge weights l(e) e ∈ E
satisfying the triangle inequality. Let 1 ≤ k ≤ K be given integer capacities.
Assume that V = {r} ∪ VK ∪ Vk, where r is a root node, and VK and Vk are the
sets of nodes having capacity K and k, respectively. In the (K, k) capacitated

spanning tree problem we want to compute a minimum weight tree rooted
at r such that for each v ∈ V \{r} the number of nodes in the subtree rooted at
v is no bigger than its capacity.

We are motivated by the following: Nodes of the graph correspond to sensors
collecting data that must be transported to a given base-station, the root of the
tree. Each sensor forwards all of its data to another (single) node, thus forming a
tree representing established data paths. Each node v is also responsible to keep
an archive (backup, or data repository) for all of the data at all nodes in the
subtree rooted at it (in case the link to a child goes down). The node’s capacity
represents a storage capacity, saying, e.g., how many nodes’ worth of data can
be stored at node v. So, we must build trees that obey this capacity constraint.
Given costs of the edges, the goal is to build short (”cheap”) trees.

The (K, k) capacitated spanning tree problem is NP-hard as it is a
generalization of the Capacitated Minimum Spanning Tree Problem where
K = k (see [12]).
Our results are as follows:

– For k = 1:
• For K = 2 we present a way to find the optimal solution.

⋆ Department of Applied Mathematics and Statistics, State University of New York,
Stony Brook, NY 11794-3600, USA. estie@ams.sunysb.edu; Partially supported by
NSF CCF-0729019

⋆⋆ Department of Computer Science, The Academic College of Tel-Aviv Yaffo, Yaffo,
Israel. becknili@mta.ac.il ;

⋆ ⋆ ⋆ School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. has-
sin@post.tau.ac.il.

• We present a K − 1 simple approximation algorithm, this algorithm is
suitable for small values of K.

• We also present a 6-approximation algorithm which is suitable for all
values of K.

– For k = 2 we present a 10-approximation algorithm, suitable for all values
of K.

– We present a 21-approximation algorithm suitable for all values of (K, k).
– We consider a generalization of the problem where each node v ∈ V has

its capacity kv, we present an (2 + α)-approximation algorithm for α which
bounds the ratio between the maximal and minimal node capacities.

The Capacitated Minimum Spanning Tree Problem has been studied
extensively in the Operations Research literature. It arises in practice in the
design of local area telecommunication networks. See [5] for a survey. Various
generalizations have also been considered, such as [3] who consider different types
of edges, with costs depending on the edge type chosen.

Papadimitriou [12] proved that the capacitated spanning tree problem is NP-
hard even with k = 3. In [1] Altinkemer and Gavish proposed a 3-approximation
algorithm. Gavish, Li and Simchi-Levi gave in [6] worst case examples for the 3-
approximation algorithm showing that the bound is tight. Gavish in [4] presented
the directed version of the problem and gave a new linear integer programming
formulation of the problem. This formulation led to a new Lagrangean relax-
ation procedure. This relaxation was used for deriving tight lower bounds on the
optimal solution and heuristics for obtaining approximate solutions.

The most closely related model to ours seems to be the one considered by
Gouveia and Lopes [7]. In their model, the children of the root are called first-
level nodes and they are assigned capacities of, say K, while all the other second
level nodes have smaller capacities, say k < K. The main difference between
their model and our (K, k) model is that in our case the capacities are attached
to the nodes as part of the input, whereas in their model the capacity of a node
depends on its position in the solution. Gouveia and Lopes present heuristics
and valid inequalities for their model supported by computational results.

Jothi and Raghavachari,[8], study the capacitated minimum spanning

network problem, which asks for a minimum cost spanning network such that
the removal of r and its incident edges breaks the network into 2-edge-connected
components, each with bounded capacity. They show that this problem is NP-
hard, and present a 4-approximation algorithm for graphs satisfying triangle
inequality.

Jothi and Raghavachari in [9] study the capacitated minimum Steiner

tree problem, looking for a minimum Steiner tree rooted at a specific node,
in which the sum of the vertex weights in every subtree is bounded.

Könemann and Ravi present in [10] bicriteria approximation algorithms for
the degree-bounded minimum cost spanning tree, a problem relevant to
the one studied here, since bounding the out-degree of a node may imply bounds
on the subtree descending from this node.

Morsy and Nagamochi study in [11] the Capacitated multicast tree

routing problem. In this problem we search for a partition {Z1, Z2, . . . , Zl} of

a given terminal set and a set of subtrees T1, T2, . . . , Tl such that Zi consists of
at most k terminals and each Ti spans Zi∪{s} (where s is the given source). The
objective is to minimize the sum of lengths of the trees T1, T2, . . . , Tl. They also
propose a (3

2 + 4
3ρ) approximation, where ρ is the best achievable approximation

ratio for the Steiner tree problem.
Deo and Kumar in [2] suggest an iterative refinement technique to compute

good suboptimal solutions in a reasonable time even for large instance of prob-
lems. They discuss how this technique may be effectively used for the capacitated
minimum spanning tree problem.

2 The (K, 1) problem

In this case the nodes of Vk must be leaves of the tree.

2.1 The (2, 1) problem

An optimal solution can be obtained through a matching algorithm. We match
pairs of nodes such that the root can be matched many times but any other node
can be matched only once. Matching node v to the root costs l(v, r). Matching
non-root nodes u and v costs l(u, v) + min{l(r, u), l(r, v)}, for u, v ∈ V2 and
l(u, v) + l(r, u) if u ∈ V2 and v ∈ V1.

2.2 The (K, 1) problem with small K

When K ≤ 6 the following simple idea gives a better approximation bound than
the general one we present in the next subsection.

Remark 1. It follows easily from the triangle inequality that a star (where all the
nodes are directly connected to the root) is a K-approximation.

Lemma 1 The matching solution described for the case K = 2 is a (K − 1)-
approximation.

Proof. Denote by optK the optimal solution for a constant K.
Let u1, u2, . . . , ul be the sons of r in optK , and let Ti, i ∈ {1, . . . , l} be the
subtree of optK hanging on ui.
Consider a subtree Ti which contains more than one node (it contains at least
one node which is not ui). Let w∗

i be a son of ui in Ti and let w1
i , . . . , wp

i be the
other nodes in Ti. Since optK is a solution to the (K, 1) problem p ≤ K − 2.
Connect all the nodes w1

i , . . . , wp
i directly to r.

Denote by T ′ the tree created after performing this change for every Ti, i ∈
{1, . . . , l}, |V (Ti)| > 2. The length of the edges connecting r to the nodes
w1

i , . . . , wp
i is bounded (using the triangle inequality) by the length of the paths

between r to these nodes in optK . Since p ≤ K − 2 each edge in Ti is charged at
most K − 2 times. Hence,

l(T ′) ≤ (K − 1)l(optK)

Since T ′ contains only paths of one or two nodes, it is a solution to the (2, 1)
problem. A problem that can be solved optimally by the matching solution
described above. Thus the matching solution described for the case K = 2 is a
(K − 1) approximation for the (K, 1) problem.

Remark 2. Since the optimal solution contains subtrees with at most K nodes
in each subtree, As in [1]:

∑
v∈VK∪Vk

l(r, v)

K
≤ opt.

2.3 The (K, 1) problem with general K

We present an approximation algorithm for the general (K, 1) problem.

Algorithm (K, 1) tree

1. Compute a minimum weight matching M from the nodes of Vk to VK ∪ {r}
such that each node in VK may be assigned at most K − 1 nodes, and all
the remaining nodes are assigned to r. The matching cost is the weight of
the connecting edges in G. M defines a set of stars in the graph, each star
is rooted at one of the nodes in VK ∪ {r}, and the leaves of this star are the
nodes from Vk matched to the root of the star (see Figure 1 top left).

2. For every star rooted at a node from VK with at least K
2 nodes, [By Step 1

the number of nodes in this star is at most K.] connect this star to r using
the shortest possible edge (see Figure 1 top right). [Later (in Step 5) we will
change this connection to be a feasible connection, as the nodes from Vk

must be leaves of the tree.]
3. Compute an MST, Ts, on r and the nodes from VK that were not connected

to r in Step 2 (see Figure 1 middle left). [The optimal solution contains a
tree T on VK ∪ {r}. T is a steiner tree on V (Ts), hence l(Ts) ≤ 2l(T).]
Figure 1 middle right shows Ts∪M , which includes all the connections made
so far.

4. Scan Ts from bottom to top and for every node v ∈ VK we make the following
changes (to guarantee that the subtree rooted at v has at most K nodes):

– Denote by y1, . . . , ym ∈ VK and u1, . . . , ul ∈ Vk the sons of v, and denote
the subtree rooted at yi by Ti. [Since the tree is scanned from bottom
to top |V (Ti)| ≤ K.]

– While
∑m

i=1 |V (Ti)| ≥ K
2 let p satisfy K

2 ≤
∑p

i=1 |V (Ti)| ≤ K, disconnect
Ti, (i ∈ {1, . . . , p}) from Ts, add the edges {(yq, yq+1)|1 ≤ q ≤ p−1}, and
connect this new tree to r using the shortest possible edge. Renumber
the nodes yp+1, . . . , ym to y1, . . . , ym−p and set m = m − p.
[After the change the number of descendants of v going through VK

nodes is smaller than K
2 , and the number of sons of v from Vk is smaller

than K
2 , giving that overall v has less than K descendants.]

– If the subtree rooted at v (including v) contains at least K
2 nodes, dis-

connect this subtree from Ts, and connect to the root using the shortest
possible edge.

(See Figure 1 bottom left)
5. In all cases of connecting a subtree to r by the end edge (r, u) where u ∈ Vk,

change this connection to connect the subtree to r using the parent of u.
Note that the parent of u is always included in the subtree and is always a
node in VK . (See Figure 1 bottom right.)

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

r

21

3 4 5 6

Fig. 1. The different steps in Algorithm (K, 1) Tree with K = 7, k = 1

Theorem 2. Denote by APX the solution returned by Algorithm (K, 1) Tree,
and let opt be the optimal value, then: l(APX) ≤ 6opt.

Proof. The optimal solution contains T a spanning tree in the graph induced by
VK ∪ {r} and a matching connecting the Vk nodes to VK ∪ {r} , so

l(T) + l(M) ≤ opt (1)

When disconnecting subtrees from the tree and connecting them directly to
r we add three kinds of edges:

– Connecting brothers (adding edges (yjq
, yjq+1

) to the tree in step 4). The
sum of lengths of these edges can be bounded using the triangle inequality
by twice the length of the edges (v, yj1), . . . , (v, yjp

). We notice that the
added edges replace the edges (v, yj1), . . . , (v, yjp

). Hence, the length added
throughout the algorithm using these kind of connection is bounded by l(Ts).

– We add edges connecting trees with at least K
2 nodes to r. Let S1, . . . , Sq be

the sets disconnected this way from T ′′. Let ei be the edge used to connect
Si to r. Since this is the shortest possible such edge,

l(ei) ≤ min{l(r, v)|v ∈ Si} ≤
∑

v∈Si
l(r, v)

|Si|
≤ 2

K

∑

v∈Si

l(r, v).

Using Remark 2:

q∑

l=1

l(ei) ≤
q∑

i=1

2

K

∑

v∈Si

l(r, v) ≤ 2

K

∑

v∈VK∪Vk

l(r, v) ≤ 2opt.

– In step 5, we change some of the connecting edges from (r, u), u ∈ Vk to
(r, P (u)), u ∈ Vk where P (u) ∈ VK is the parent node of u in M . By the
triangle inequality l(r, P (u)) ≤ l(r, u)+l(u, P (u)), where (u, P (u)) was added
to the tree in M . Thus, this step adds at most the length of all the edges
from nodes in Vk to their parents in VK , with total length at most l(M).

Summing all this, l(APX) consists of :

– The length of the edges in the stars created in Step 1: l(M).
– The length of the edges in the Ts created in Step 3: l(Ts) ≤ 2l(T).
– The length of the connecting edges of type (yjq

, yjq+1
) of length at most

l(Ts) ≤ 2l(T).
– The length of the edges connecting subtrees to r, with maximal length 2opt.
– The correction introduced is Step 5, this correction adds lengths bounded

by l(M).

Altogether, l(APX) ≤ 2l(Ts)+2l(M)+2opt ≤ 4l(T)+2l(M)+2opt, and by
(1): l(APX) ≤ 6opt.

3 The (K, 2) problem

Theorem 3. Assume k = 2 and denote by APX the solution returned by Algo-
rithm (K, 1) Tree, and let opt be the value of an optimal solution. Then APX ≤
10opt.

Proof. Consider an optimal solution. Suppose it contains a path (v, u, w) with
v, w ∈ VK and u ∈ Vk, then replace this path by an edge (v, w) and remove the
node u. By the triangle inequality this change does not increased the length of
the tree. Since k = 2, w is the only possible son of u. By repeating this step we
conclude that there exists a tree, To spanning VK ∪{r} whose length is no bigger
then opt:

l(To) ≤ opt. (2)

To is also a steiner tree on V (Ts) giving that this tree also satisfies:

l(Ts) ≤ 2l(To) ≤ 2opt.

Using similar notations to those of Theorem 2:

l(APX) ≤ 2l(T2) + 2l(M) + 2opt ≤ 4l(To) + 2l(M) + 2opt. (3)

Consider again the optimal solution and suppose it contains a path (v, u, w)
with v ∈ VK and u ∈ Vk (w can be in both sets of nodes). Suppose we replace
the edge (u,w) with (v, w). By the triangle inequality l(v, w) ≤ l(v, u) + l(u,w),
so the length of the tree grows by at most l(v, u) which is part of the optimal
solution. After performing this change on all the paths of this kind, we obtain a
tree whose length is at most 2opt and contains a matching between the nodes
in VK ∪ {r} and the nodes in Vk, such that each node in VK is assigned at most
K − 1 nodes. Since M is a minimum cost matching of this type,

l(M) ≤ 2opt. (4)

Using Equations (3), (2), and (4),

l(APX) ≤ 4l(To) + 2l(M) + 2opt ≤ 10opt.

4 The (K, k) problem

We now turn to the (K, k) capacitated spanning tree problem, and con-
sider first a näıve algorithm for the problem: Solve (optimally or approximately)
two separate problems. One on {r}∪VK and the second on {r}∪Vk. Then hang
the two separate trees on r. This clearly yields a feasible solution.

The following simple example shows that the value of this solution can be as
much as K−1

k
+ 1 times the optimal value (even if both separate problems are

solved optimally). In this example we assume that K−1
k

is integer. The graph
has a single node of capacity K, and K − 1 nodes of capacity k, all at distance 0

from each other, and distance 1 from the root. The first tree is a single edge of
length 1, and the second tree includes K−1

k
unit length edges from the root.Thus

yielding a solution of cost K−1
k

+1 while an optimal solution has all nodes in Vk

hanging off the single node in VK , and thus is of cost 1.
In this section we show how to obtain a constant factor approximation algo-

rithm for the (K, k) problem. We first show that any feasible solution F can be
transformed into another feasible solution F ′ with restricted structure, without
increasing the weight “too much”.

4.1 Ordered Tree

Definition 4 In an ordered tree the capacities of nodes in every path starting
at the root are nonincreasing.

Lemma 5 Consider a (K, k) capacitated spanning tree problem, Let opt be the
length of an optimal solution. There is a feasible ordered tree with length no
greater than 3opt.

Proof. We start with an optimal tree T , and construct an ordered tree with
length at most 3l(T).

Consider T an optimal solution, let w1, . . . , wm be the sons of r with kwi
= K

and let u1, . . . , ul be the sons or r with kui
= k.

For every wi ∈ {w1, . . . , wm} let Twi
be the subtree in T rooted at wi.

Connect all in Twi
∩ VK using an MST on these nodes. The length of this MST

is at most 2l(Twi
). Connect every node in Twi

∩ Vk to its original father-node in
Twi

, since these edges are included in Twi
their total length is at most l(Twi

).
Denote by T ′

wi
the new subtree rooted at wi. Since all the ’heavy’ nodes are

connected by an MST, T ′
wi

is an ordered tree. Since we started with T which
is a feasible solution there are at most K nodes in T ′

wi
, hence T ′

wi
is a feasible

ordered subtree with length at most 3l(Twi
).

For every ui ∈ {u1, . . . , ul} let Tui
be the subtree in T rooted at ui. Connect

all the nodes in Tui
∩ VK and r using an MST on these nodes. Connect every

node in Tui
∩Vk to its original father node in Tui

. Denote by T ′
ui

the new subtree
spanning the nodes of Tui

. This subtree is rooted at r and contains at most k
nodes (since T was feasible). As in previous case T ′

ui
is a feasible ordered subtree

with length of T ′
ui

at most 3l(Tui
).

After performing all these changes we obtain a feasible ordered tree with
length at most 3l(T). See Figure 2 for an example before the change (left) and
after it (right).

Remark 3. There is an instance of the (K, k) capacitated spanning tree problem
such that l(To) = 3l(T) where To is a minimal length feasible ordered tree and
T is an optimal solution.

Proof. Suppose that T is constructed in the following way: r has one son-node v∗

with kv∗ = k. v∗ roots
√

k − 1 subtrees T1 . . . T√
k−1 where each Ti contains the

Fig. 2. An example for Lemma 5, big dots represent nodes with capacity K and small
dots represent nodes with capacity k

path vi
1, . . . , v

i√
k−1−1

, where vi
j ∈ Vk and an edge (vi√

k−1−1
, ui) where ui ∈ VK .

All the edges in T are of length one except for l(r, v∗) =
√

k − 1. Other edges
in the graph are the maximal ones satisfying the triangle inequality. Obviously
this tree is feasible. The length of each subtree Ti is

√
k − 1, hence the length of

T is k − 1 +
√

k − 1.

In a feasible ordered tree, all the nodes in VK must be connected directly to
r. In an MST spanning VK∪{r} each edge is of length 2

√
k − 1. Hence the length

of an MST on VK ∪ {r} is 2(k − 1). Each node in vk can still be connected to
its father-node as defined in T . The length of the edges connecting these nodes
is
√

k − 1 +
√

k − 1(
√

k − 1− 1) = k − 1. The length of To is therefore 3(k − 1).
When k → ∞, l(To) → 3l(T).

See Figure 3 for an example of the graph before the change (left) and after it
(right).

Fig. 3. An example for Remark 3 with k = 65, big dots represent nodes with capacity
K and small dots represent nodes with capacity k

4.2 The approximation algorithm

In our algorithm we use the algorithm for the minimum capacitated tree problem
described in [1]. This algorithm computes a 3 approximation solution where each
subtree is a path.

We offer the following algorithm:
Algorithm (K, k) Tree

1. Compute a minimum spanning tree in the graph induced by r ∪ VK , call it
T1. An example of T1 is shown in Figure 4 top-left.

2. Contract the nodes r ∪ VK into a single node R, and find an approximate
capacitated spanning tree on R ∪ Vk with capacities k, using the method of
[1]. Call this tree T2. Note that in T2, each subtree of nodes of Vk hanging
on R is a path of length exactly k, except for possibly one shorter path. An
example of T2 is shown in Figure 4 top-right.

3. “Uncontract” the node R in T2, obtaining a forest in which each connected
component is a rooted-spider, a node in r ∪ VK with paths of nodes from
Vk, all of length k except possibly for one shorter path. Let F2 denote the
forest created from T2 edges after the ’uncontraction’ . Consider Figure 4
middle-left for an example of F2, where the bold nodes denote r ∪ VK .

4. Define a matching problem on a complete bipartite graph B = (S1, S2, S1 ×
S2): In the first side, S1, of our bipartite graph B, we have a node for each
“leg” (path) of a spider. Each node in S1 should be matched exactly once. In
the second side of B we have nodes S2 = r ∪ VK , nodes of VK have capacity
⌊K/k⌋ − 1 (meaning that each can be matched at most that many times)
and r has unbounded capacity. The cost of matching a node in S1 to node
in S2 is the length of the edge from a node in the spider leg closest to the
destination node.

5. Solve the matching problem and change F2 in the following way: Each spider
leg will be attached to the node in r∪VK it is assigned to it in the matching
problem. The attachment is done by connecting the node in the path closest
to the node (i.e., the edge which defines the cost used in the matching).
Denote the new forest as F ′

2. The forest F ′
2 is illustrated in Figure 4 middle-

right.
6. Consider T1 ∪ F ′

2 (this graph can be shown in Figure 4 bottom-left). For

every v ∈ VK with legs P1, . . . , Pl ∈ Vk and
∑l

i=1 |V (Pi)| ≥ K
2 −1, disconnect

v∪{P1, . . . , Pl} from T1∪F ′
2. [By the way the algorithm works

∑l

i=1 |V (Pi)| ≤
K − 1.] Connect this subtree to r using the shortest possible edge. This step
is applied to the subtree rooted at v2 in the bottom figures of Figure 4.

7. The tree T1 was disconnected in the previous step, reconnect it using only
edges between nodes in VK ∪{r}\{nodes that were disconnected in previous
step }. Denote the new tree induced on VK as T3. The graph after applying
this change to v1 is shown in Figure 4 bottom-right.

8. Finally, to turn this into a feasible solution for all nodes of VK , we follow
Steps 4,5 of Algorithm (K, 1) Tree in Section 2.3.

r

v1

v4v2 v3

R

r

v1

v4v2 v3

w1

w2

w3

w4

u1
u2

u3
u4

r1

r2

r3

r4

r

v1

v4v2 v3

w1 w2 w3 w4

u1
u2

u3
u4

r1

r2

r3

r4

r

v1

v4v2 v3

w1 w2 w3 w4

u1
u2

u3
u4

r1

r2

r3

r4

r

v1

v4v2 v3

w1 w2 w3 w4

u1
u2

u3
u4

r1

r2

r3

r4

Fig. 4. The different steps in Algorithm (K, k) Tree with K = 18 and k = 4

Theorem 6. Denote by opt the value of an optimal solution, and APX the
solution returned by Algorithm (K, k) Tree, then l(APX) ≤ 21opt.

Proof: By construction, l(T1) ≤ 2opt and l(T2) ≤ 3opt, l(T3) ≤ 2l(T1) ≤
4opt. Next, we bound the length of the edges in the matching. Consider another
bipartite graph B′ = (S1, S

′
2, E

′), with the same nodes on the first side as B,
namely S1, and nodes on the second side S′

2 each corresponding to maximal
subtrees induced by Vk in opt′ where opt′ is the best feasible ordered tree. By
Lemma 5 opt′ ≤ 3opt. There is an edge in E′ a node in S1 and a node in S′

2 if the
two sets of nodes (the leg and the subtree) have at least one node in common (B′

is their intersection graph). We now show that B′ has a matching in which all
nodes of S1 are matched, using Hall’s Theorem. Recall that all legs of APX are
of length exactly k, except possibly for one shorter leg, whereas all the subtrees
from opt′ have length at most k.
In our graph B′ = (S1, S

′
2, E), we want to show that Hall’s condition holds, and

therefore there is a matching saturating all nodes of S1. Let X ⊆ S1. X represents
|X| disjoint paths each of length k except possibly one shorter, therefore it
represents more than k(|X| − 1) nodes of Vk. Call this set Vk(X), and so we
have |Vk(X)| > k(|X| − 1). Similarly, N(X) also represents disjoint subtrees of
nodes in Vk, each subtree contains at most k nodes. Call this set Vk(N(X)).
Therefore |Vk(N(X))| ≤ k|N(X)|. By construction Vk(X) ⊆ Vk(N(X)) and
therefore k(|X| − 1) < |Vk(X)| ≤ |Vk(N(X))| ≤ k|N(X)|, resulting in |X| − 1 <
|N(X)|, or equivalently |X| ≤ |N(X)| as required by Hall’s Theorem.
Observe that our graph G can be thought of as a subgraph of the graph for which
the algorithm finds a matching, simply merge subtrees (nodes of S′

2) that are
attached to the same node in r ∪ VK to obtain S2. Thus, the matching in graph
G is a feasible solution to the matching found by our approximation algorithm,
and our algorithm picked the best such matching. Thus the connections in the
last step of our algorithm have total length l(conn) which is at most opt′.

When disconnecting subtrees from the tree and connecting them directly to
r we add three kinds of edges:

– Connecting brothers (adding edges (yi, yi+1) to the tree). The sum of lengths
of these edges can be bounded by the length of T3.

– We add edges connecting trees with at least K
2 nodes to r. As in the proof

of Theorem 2 we can bound the length of the edges with 2opt.
– In the last step we change some of the connecting edges from (r, u), u ∈ Vk

to (r,Au), u ∈ Vk, where Au is the closest ancestor of u which is in VK . By
the triangle inequality l(r,Au) ≤ l(r, u) + l(u,Au), where (u,Au) is a part
of leg added to the tree in the matching. Thus, this step adds at most the
length of all the edges from nodes in Vk to their ancestors in VK , with total
length at most l(conn).

Summing all this, l(APX) consists of:

– l(T1) ≤ 2opt, l(T2) ≤ 3opt, l(T3) ≤ 4opt.
– l(conn) ≤ opt′ ≤ 3opt.

– The edges added connecting brothers with length ≤ l(T3) ≤ 4opt.

– Edges connecting subtrees to r with length ≤ 2opt.

– Changing the connecting edges to ancestors from VK with maximal length
l(conn) ≤ 3opt.

Altogether, l(APX) ≤ 21opt.

5 Concluding remarks: General capacities

A natural extension of our model allows more than two capacity types. In the
extreme case, each node v may have a different capacity, kv. We leave this gener-
alized problem for future research, and observe that a straightforward extension
of the näıve algorithm of Section 4 is possible, as follows: Let kM be the maximal
capacity bound and km the minimal capacity bound, and let α = kM

km
. W.l.o.g.,

assume that |V |
km

is an integer, otherwise add an appropriate number of nodes
with zero distance from r without affecting the solution.

The algorithm: Compute an MST, T . Double its edges to create an Eulerian
cycle. By shortcutting the cycle form a Hamiltonian cycle in the standard way.
Partition the cycle into subpaths, each containing km nodes. Connect each sub-
path to r using the shortest possible edge. (This is actually the approximation
algorithm suggested in [1] for kM = km.)

Theorem 7. Denote by opt the value of the optimal solution and by APX the
approximation solution, then l(APX) ≤ (2 + α)opt.

Proof. Denote by C the connections of the subpaths to r. We have l(T) ≤ 2opt,
and since the algorithm uses the shortest possible connecting edges, l(C) ≤
P

v
l(r,v)

km
. By the way the algorithm works:

l(APX) ≤ 2l(T) + l(C).

Using Remark 2 and since each subtree of the optimal solution contains at most
KM nodes ∑

v l(r, v)

KM

≤ opt,

giving

l(C) ≤
∑

v l(r, v)

KM · km

KM

= α ·
∑

v l(r, v)

KM

≤ α · opt.

Finally,

l(APX) ≤ (2 + α)opt.

References

1. K. Altinkemer and B. Gavish. Heuristics with constant error guarantees for the
design of tree networks. Management Sci., 34:331–341, 1988.

2. N. Deo and N. Kumar. Computation of constrained spanning trees: a unified ap-
proach. Lecture Notes in Econ. and Math. Systems, 450:194–220. Springer, Berlin,
1997.

3. I. Gamvros, S. Raghavan, and B. Golden. An evolutionary approach to the multi-
level Capacitated Minimum Spanning Tree problem. Technical report., 2002.

4. B. Gavish. Formulations and algorithms for the capacitated minimal directed tree
problem. J. Assoc. Comput. Mach., 30:118–132, 1983.

5. B. Gavish. Topological design of telecommunication networks - local access design
methods. Annals of Operations Research, 33:17–71, 1991.

6. B. Gavish, C. L. Li, and D. Simchi-Levi. Analysis of heuristics for the design of
tree networks. Annals of Operations Research, 36:77–86, 1992.

7. L. Gouveia and M.J. Lopes, Using generalized capacitated trees for designing the
topology of local access networks. Telecommunication Systems, 7:315-337, 1997.

8. R. Jothi and B. Raghavachari. Survivable network design: the capacitated mini-
mum spanning network problem. Inform. Process. Let., 91:183–190, 2004.

9. R. Jothi and B. Raghavachari. Approximation algorithms for the capacitated
minimum spanning tree problem and its variants in network design. ACM Trans.

Algorithms, 1:265–282, 2005.
10. J. Könemann and R. Ravi. Primal-dual meets local search: approximating MSTs

with nonuniform degree bounds. SIAM J. Comput., 34:763–773, 2005.
11. E. Morsy and H. Nagamochi. An improved approximation algorithm for capaci-

tated multicast routings in networks. Theoretical Comput. Sci., 390:81–91, 2008.
12. C. H. Papadimitriou. The complexity of the capacitated tree problem. Networks,

8:217–230, 1978.

