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Abstract

We define the k-path tree matroid, and use it to solve network design problems in which
the required connectivity is arbitrary for a given pair of nodes, and 1 for the other pairs. We
solve the problems for undirected and directed graphs. We then use these exact algorithms to
give improved approximation algorithms for problems in which the weights satisfy the triangle
inequality and the connectivity requirement is either 2 among at most five nodes and 1 for the
other nodes, or it is 3 among a set of three nodes and 1 for all other nodes.

Mathematics subject classification: Discrete mathematics 68R99, connectivity 05C40.

1 Introduction

Consider a complete graph G = (V, E) with nonnegative edge weights w;; for each (i,j) € E.
Denote the weight of a subgraph G’ of G by w(G’) = Z(i’j)eG, w;;. THE SURVIVABLE NETWORK
DESIGN PROBLEM (SND), seeks a minimum weight subgraph of G such that each pair of nodes
i, 7 has a pre-specified requirement r;; of edge-disjoint 7 — j paths. When r;; = 1 for all ¢, j, this
is the classical MINIMUM SPANNING TREE PROBLEM. When r;; € {0, 1}, this is the well-known
NP-hard MINIMUM STEINER TREE PROBLEM. Jain [14] presented a 2-approximation algorithm
for the SND problem doing integer rounding to a linear programming relaxation.

The k-PATH TREE PROBLEM is the special case of the SND problem in which there are two
special nodes p and ¢ such that r,, = k and r;; =1 for all {4, j} # {p,q}.

Balakrishnan, Magnanti, and Mirchandani [2] considered the 2-PATH TREE PROBLEM. They
show that if the edge weights satisfy the triangle inequality, then the problem can be solved in
polynomial time using matroid intersection algorithms.

The same authors [3] provide a 2-approximation algorithm for the k-PATH STEINER TREE
PROBLEM which is a generalization of the k-PATH TREE PROBLEM, where r,, = k for the given
pair p, ¢, and 7;; € {0, 1} otherwise, assuming that the weights w;; satisfy the triangle inequality.
In [4], the same authors consider the following SND problem: Each node ¢ has a nonnegative
integer p;, r;; = min{p;, p;} for all (i,j) € E. They propose the following algorithm: In the
first step, approximate the corresponding backbone network problem which consists of meeting
the requirements of all r;; > 2 values. In the second step, complete the access network to meet
the remaining requirements. This step is accomplished by computing a 2-approximation to a
Steiner forest problem on a contracted graph. The performance guarantee of this algorithm is
1+ 0 where 6 is the approximation factor of the first step.
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In this paper we define the k-path tree matroid. We then use this matroid to extend the
results of [2] in several ways: In Section 3 we give a polynomial time algorithm for the k-PATH
TREE PROBLEM. In Section 4 we use this exact algorithm to give improved approximation
algorithms for some problems assuming that the weights satisfy the triangle inequality. In
Section 5 we consider the problem on directed graphs, where r;; denotes the requirement of
edge-disjoint directed paths from node i to node j. We give a polynomial time algorithm when
r14 = 2 for specified nodes 1 and ¢, and r1; = 1 for all other nodes j € V. We prove that simple
extensions of this problem are already hard.

The SND problem was first introduced by Steiglitz, Weigner, and Kleitman [23]. The survey
by Grotschel, Monma, and Stoer [11] describes motivation, polynomially solvable cases, Integer
Programming methods, heuristics, and directed variants. See also [13] for a recent survey. Frank
[8] considers the directed SND problem where for every subset of nodes S C V' the number of of
arcs leaving S is at least f(S). He shows that for requirement function f(.9) that is intersecting
supermodular, the problem is polynomial. Melkonian and Tardos [18] give a 2-approximation
when f is crossing supermodular.

In this paper disjoint paths mean edge-disjoint paths, unless stated otherwise. We denote
by opt the value of an optimal solution to the problem under consideration.

2 The k-path tree matroid

Consider a complete graph G = (V, E) with a distinguished node p and n nodes in total. Let
k < n —1 be a constant. Define the bases of E as subsets of E with exactly n + k — 2 edges
which induce a spanning subgraph, all of whose cycles contain p. Let F denote the family of
subsets of the above bases. Consider the k-path tree matroid M, = (E,F) to be the system
defined by these bases. Below we prove that this is a matroid.

M,,1 is the graphic matroid. M, o is sometimes called the 1-tree matroid ([1] Exercise
13.38).1 We prove that it is a matroid also for k > 0.

Theorem 2.1 M, = (E,F) is a matroid.

Proof: We use the following well-known construction: The matroid sum of a matroid M; on
set Fq and a matroid My on set Es is the matroid M on E; U Es where each independent set
is the union of an independent set of M; and an independent set of My ([19], see also [15]).
Let E be the edge set of the graph G, and define E’ to be the set of edges incident at node p.
Let M denote the uniform matroid on E’, where each set of cardinality < k — 1 is independent.
We first claim that each base of M, . is a spanning tree of G plus k — 1 edges incident at p.
To see this property, consider a base B. While B contains more than n — 1 edges, it contains a
cycle. By assumption, the cycle contains two edges incident with p. Remove one of these two
edges. After k — 1 repetitions of this process we end with a spanning tree, proving the claim.
Therefore, M,, j is the matroid sum of the uniform matroid on E’ with rank k£ — 1 and of the
graphic matroid of G. [

3 The k-path tree problem

The k-PATH TREE PROBLEM with special nodes p, g € V requires to compute a minimum weight
spanning subgraph that contains &k disjoint p — ¢ paths, and 1 path between any other pair of
nodes.

Theorem 3.1 Consider the k-PATH TREE PROBLEM with special nodes p,q € V', and add to it
the requirement that the k paths are node-disjoint. Then, the problem is equivalent to finding a
minimum weight common base of the matroids My, 1, and Mg .

!The bases of this matroid are different from the 1-trees defined in [12] since the degree of the special node is not
restricted to be 2. See also, [10, 24]



Proof: Clearly, a solution to the k-PATH TREE PROBLEM contains a common base to these
matroids. We now show the other direction. Consider a common base B. It induces a connected
subgraph because this property is required from every base of either matroid. Moreover, every
cycle in B includes both p and ¢. Consider the subgraph G’ = (V’, E’) induced by the union of
all the cycles of B, and suppose that it contains ng nodes. Since every node in V' \ V' needs a
single edge to maintain connectivity, |E'| = |B|—(n—ng) = (n+k—2)— (n—ng) =ng+k—2.
Consider a cycle induced by B, i.e., a pair of p—q paths. These paths must be node-disjoint since
otherwise they contain a cycle that does not include one of the nodes p and ¢. **The following
argument proves that G’ contains k node-disjoint p—g paths: Initially we have |E'|—|V'| = k—2.
While |E'| — |[V'| > 0 G’ contains a cycle consisting of two node-disjoint p — ¢ paths. choose one
of these paths and delete its edges and internal nodes. This change decreases |E’| — |V'| by 1.
After k — 1 repetitions we get |E’| — |[V’/| = —1 and hence a spanning tree, containing exactly
one p — q path. Altogether we have identified k node-disjoint p — ¢ paths. [ ]

Corollary 3.2 The k-PATH TREE PROBLEM with special nodes p,q € V, and weights that satisfy
the triangle inequality is equivalent to finding a minimum weight common base of the matroids

My and Mgy .

Proof: We observe that under the triangle inequality any solution can be converted, without
increasing its weight, to one where the k p — ¢ paths are node-disjoint. (While there exist two
paths with a common node, shortcut one of these paths so it skips this node. By the triangle
inequality, this change does not increase the cost of the solution. Therefore Theorem 3.1 applies.
[

Theorem 3.3 The k-PATH TREE PROBLEM can be solved in polynomial time

Proof: We want to formulate the problem as a matroid intersection problem. However, when
the triangle inequality does not hold, the edge-disjoint p — ¢ paths in an optimal solution are not
necessarily node-disjoint, and therefore we don’t know the number of edges used by the solution.
We overcome this difficulty by transforming the graph as follows. For each node u € V' denote
by d(u) the set of edges that are incident with w in G. Replace u # p,q by a set of nodes
{ue : e € §(u)}. Each edge (u,v) € E is replaced by an edge (ue,v.) with the same weight,
where u. = p for u = p and u. = ¢ for u = q. We also add zero-weight edges (u.,uy) for every
Ue,uf € 6(u). We now solve the matroid intersection problem as in the proof of Theorem 3.1.
The problem of finding a minimum weight common base of two matroids can be solved in
polynomial time (see, for example, [22]). n

4 Approximation algorithms

In this section we apply Theorem 3.3 and present several approximation algorithms with bounded
performance guarantees for SND problems in which more than two nodes require connectivity
larger than 1, and the weights satisfy the triangle inequality. Since Jain’s algorithm [14] can be
used to obtain a 2-approximation for the general SND problem, we are only interested in cases
where a better approximation can be achieved. In particular, for a problem with a set S of
nodes, |S| < 5, and requirement r;; = 2 for every 4,5 € S and r;; = 1 otherwise, we present a

(2 — %)—appmximation algorithm. We also present a %—approximation when [S| =3, r;; =3
for every 4,j € § and 7;; = 1 otherwise.

We denote by OPT the solution of the problem under consideration, and by opt the cost
(value) of this solution. Recall that throughout this section we assume that G is a complete

graph and that the edge weights satisfy the triangle inequality.
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Figure 1: Subgraphs defined by S: Case 3 (left) and 4 (right).

Lemma 4.1 Consider an SND problem with r;; = 2 for alli,j € S, where |S| = s < 5. Let Gg
be the subgraph of G induced by S. Let H be a minimum cost Hamiltonian cycle in Gg. Then,
w(H) < opt.

Proof: It suffices to consider the case s = 5, since for s < 5 we can duplicate nodes in S, with
edge costs zero between duplicate nodes. This does not change the cost of an optimal solution,
nor the minimum cost of a Hamiltonian cycle.

We prove the lemma by considering a cycle C contained in OPT containing as many nodes
of S as possible.

Case 1: |C' N S| = 5. In this case we can simply shortcut C' into a cycle containing only the
nodes of S, by the triangle inequality, and obtain the desired Hamiltonian cycle.

Cases 2-4: |C'N S| < 5. In these cases, we create two closed walks, CW; and CWs each of
which contains all five nodes of S, and their edges are contained in OPT. In our construction,
each edge of OPT appears at most twice in the edges of CW; UCW5, and so we have w(CW7) +
w(CWa2) < 20pt. Without loss of generality, assume w(CW;) < w(CWa2) so we have w(CWy) <
opt. By shortcutting this closed walk we get the desired Hamiltonian cycle.

Case 2: |CNS| =4. Let node k € S\ C. Consider the two paths from k to one of the other
nodes i € SN C, and denote by Pj, Qf be the parts of the paths until they hit the cycle. Now
create a closed walk CW; visiting the five nodes, contained in OPT, by concatenating the cycle
with two copies of Py. Similarly, create a second closed walk CW5 visiting all five nodes of .S,
contained in OPT, by concatenating the cycle with two copies of Q.

Case 3: |C'N S| = 3. We first claim that there must be a cycle C' containing three nodes
from S, and four disjoint paths Py, P>, @1, @2 such that P; and @) connect a fourth node of S
to C’, and P, and Q5 connect the fifth node from S to C.

Consider a cycle C' with three nodes, say k,l,m from S, and the subgraph induced by C
and two paths connecting j to C. This subgraph is shown by the solid lines in Figure 1 (left).
Note that this is the only way that has no cycle with all of these four nodes. Let C’ be the
cycle defined by (x,j,y, m,l,x). Consider now two paths connecting i to this subgraph. These
paths are shown in the figure by dashed lines. For any other pattern of these path either there is
cycle with four nodes of S, or one of C' and C’ satisfies the requirements of our claim. However,
now the cycle defined by (x,u,,v,y, m,l, z) with the paths connecting j and & to it satisfy the
requirements.

Consider now the cycle C' and paths that satisfy the claim. For example, suppose that i, j, k
are on C, and denote by P, and Q; the paths connecting [ to C, and similarly P, and Q,,



connect m to C. Recall that the four paths are disjoint. We construct one walk from C, two
copies of P, and two copies of P,,, and the second walk has C, and two copies of Q; and Q,,.

Case 4: |CNS| = 2. The situation is shown in Figure 1 (right). Let C be the cycle consisting
of the paths connecting i and m. One walk consists of C' and two copies of P;, P, and P,. The
other walk consists of C' and two copies of @);, Q; and Q.

[

It is interesting to note that the lemma cannot be extended to |S| = 6 as the following
example shows: Let G be a graph has 8 nodes, a,b,c,d,e, f,g,h, with S = {c,d,e, f,g,h},
|S| = 6. The following edges have cost 1: (a,c) (a,e) (a,g) (¢,d) (e, f) (g,h) (d,b) (f,b) (h,b).
Other edges have costs induced by this metric. For example (¢, e) has cost 2. A feasible solution
to the SND has cost 9, using the 9 edges of cost 1. However, every cycle in G that contains the
nodes of S has cost larger than 9.

Theorem 4.2 Let |S| = s, where s < 5. The SND problem with r;; = 2 for i,j € S, and
Tpq = 1 otherwise, can be approzimated with a factor of 2 — %

Proof: Denote by H a minimum weight Hamiltonian cycle in the subgraph induced by S. By
Lemma 4.1, w(H) < opt. Suppose that (7,) has maximum weight over the edges of H, and let
e = (k,l) be the next heaviest edge in H. W.l.o.g. assume that (i, %,[, j) appear in H in this
order. Let T be an optimal solution to the 2-path tree problem with special nodes ¢ and j. Let
C' be the unique cycle of T. Call v € S a leafin T if v € {i,j,k,l} or v ¢ C and there is no
u € S\ C such that v is on the unique path in T' connecting u and C. We observe that to form
a feasible solution, it is sufficient to add to T" edges so that the set of leaves is 2-connected. Let
H’ be the cycle obtained from H by shortcutting nodes that are not leaves. By the triangle
inequality, w(H') < w(H). Let MG be the multigraph obtained by the edges of T with the
edges of H'\ {(i,7)}. We observe that MG satisfies the connectivity requirements, namely it is
connected and has two disjoint paths between any pair of nodes from S.

We claim that also MG\ {e} satisfies the connectivity requirements. To prove this property
it is sufficient to observe that each of the nodes k and [ which is not in C' has two disjoint paths
to C in MG \ {e}. One path uses T" and the other one uses H' \ {(,7),e}. Since (4,j) and e
are the heaviest edges in H', w(MG \ {e}) < (2 — 2) opt.

Note that the only edges that may have two copies in MG \ {e} are (i, k) and (j,1) (there
are no other edges in T between leaves, by definition).

Suppose that (i,k) € H' NT. If k € C then we can simply delete one copy of (i, k) without
hurting connectivity. We therefore assume that k ¢ C, and let (i,q) € C, ¢ # j. We replace in
MG\ {e} one copy of (i,k) and the edge (i,q) by the edge (k,q). By the triangle inequality,
Wig < Wik + Wig-

Similarly, if (j,1) € H'NT. The result is a graph that satisfies the connectivity requirements
and its weight is at most w(MG \ {e}) < (2 — 2) opt.

Since we assumed s < 5, the algorithm is polynomial. [ ]

We observe that the two paths connecting every pair of nodes in S generated by our approx-
imation algorithm are node disjoint (in addition to being edge disjoint) The proofs of Lemma
4.1 and Theorem 4.2 also hold for the node disjoint case. Thus our approximation algorithm
also give an approximation for the problem requiring node disjoint paths.

The following example demonstrates that the bound of Theorem 4.2 is tight. Let V = SUS’,
where S = {vq,...vs} and S’ = {v},...v.}. All edge weights are 1 except for w,,,, = 0,
i = 1,...s. Clearly, an optimal solution consists of any Hamiltonian cycle of S and the zero
weight edges, so that opt = s. Let H be the cycle (v1,vs,...,vs,v1), and choose (v1,vs) for its
heaviest edge. Let T consist of (v1,vq), the path vf,...,v. and the zero weight edges. Then, T
solves the 2-path tree problem with special nodes v; and vy, and w(T') = s. The approximation
SOL is obtained by adding to T' s — 2 edges from H \ (v1,v2), and w(SOL) = 2s — 2.

We now consider a problem with connectivity requirement r,, = 3 for all u,v € S and
Tww = 1 otherwise.



Figure 2: The subgraph G’ in the proof of Lemma 4.3.

Lemma 4.3 Consider an SND problem with r;j = 3 for all i,j € S. Let {i,j,k} C S, then
Wij + wig +wjp < opt

Proof: Consider a subgraph G’ that contains three disjoint ¢ — j paths Py, P», and P;. We
consider two cases (see Figure 2, and note that some of the subpaths illustrated in the figure
may be degenerate). 1. There are nodes x € Py, y € P, and z € P5 with a kK — x path Py,
a k —y path Py, and a k — 2z path Py, disjoint among them and disjoint from the three ¢ — j
paths. 2. Asin (1) except that z,y € P1, so that P, = P, U Py, U Py;.

Denote by P;i; the subpath of P; between the specified nodes. Similarly for other subpaths.
Case 1. By the triangle inequality we have:
[w(Piz) + w(Poj)] + [w(Piy) + w(Py;)] + [w(Piz) + w(Pz)] = 3w,
[w(Piz) + w(Per)] + [w(Piy) + w(Pyr)] + [w(Piz) + w(Pex) > 3wik,
(W(Pjz) +w(Pek)] + [w(Pjy) + w(Pyr)] + [w(P)z) + w(Pep)] = 3wjp.
Summing and dividing by 2 and noting that the left-hand side is bounded by the weight of G’,
we get w(G') > %(wik + wy; + wij).
Case 2. By the triangle inequality we have:
[W(Pic) + 0(Pry) + w(Pyy)] + w(Pa) + [w(Pi2) + w(P.,)] > 3wy,
[w(Pia) + w(Por)] + [w(P2) + w(Pjy) + w(Pyr)] + [w(Plz) w(Pzk)] 2 3wik,
[0(P2) + w(Pr) + w(Par)] + [w(Pyy) + w(Py)] + [w(Py2) + w(Pr)] > 3,
w(P3) > wgj,
U.)( ) ( zk) > Wik,
w(Py2) +w(Par) > wyr.

We divide the first three inequalities by 3, and the last three inequalities by 6, and add
them up. Note that the left-hand side is the bounded by weight of G’. We get w(G') >
%(wlk + Wi, +’LUZJ) [ ]

Theorem 4.4 Let |S| = 3. The SND problem with r;; =3 fori,j € S, and r;; =1 otherwise,
11

can be approzimated with a factor of =.
Proof: Let S = {i, j, k}. Without loss of generality, w;; > w;k, w;i. By Lemma 4.3, w;, +w;, <
2. gopt = %opt.

Let OPT be an optimal solution, and consider SOL = OPT \ {(i, k), (j,k)}. We claim that
SOL is connected and has two disjoint ¢ — j paths. The claim is obvious if at most one of the
two edges is in OPT. If (i, k), (j,k) € OPT then deleting them removes from OPT one i — j
path and the i — j connectivity decreases by 1. The k — ¢ connectivity and k — j connectivity
decrease by at most 2. We conclude that the weight of an optimal solution 77 ; ; to the 2-path
tree problem with special nodes i and j in the graph G\ {(i, k), (k, j)}, satisfies w(7} ;) < opt.
We compute such a solution and call it 7} ;. Define 77 = T} ; U {(i, k), (k, j)}, then T is a
feasible solution to our problem, of weight at most 11opt [ ]



5 Directed k-path tree problems

In this section we consider directed graphs. In our terminology, an arc is a directed edge and
disjoint paths are arc-disjoint (allowing the use of an arc by one path and its oppositely directed
arc by another path).

Consider a complete directed arc-weighted graph D = (V, A) with nonnegative arc weights
w;; for each (i,j) € A. THE DIRECTED SURVIVABLE NETWORK DESIGN PROBLEM (directed
SND) seeks a minimum weight subgraph of G such that each pair of nodes i, j has a pre-specified
requirement r;; of arc-disjoint ¢ — j directed paths.

The DIRECTED k-PATH TREE PROBLEM with a special source node 1 and a destination node
q requires to compute a minimum weight subgraph that contains k arc-disjoint directed paths
from 1 to ¢ and one directed path from 1 to every other node.

Let 6" (u) be the set of arcs entering u € V. Clearly, these sets partition A. We define upper
bounds k, u € V as follows: k; =0, k, = k, and k, = 1 for u # 1,q. With the sets 6" (u) u € V.
these bounds define a partition matroid M .

Theorem 5.1 Consider the DIRECTED k-PATH TREE PROBLEM with special nodes 1,q € V,
and add to it the requirement that the k 1 — q paths are node disjoint. Then, the problem can be
solved in polynomial time.

Proof: We claim that the problem is equivalent to finding a minimum weight common base of
the two matroids My ;. (defined on the underlying undirected graph) and M3 ,. A base in the
intersection contains a spanning tree 1" and k — 1 additional arcs that enter ¢ and create cycles
in the undirected underlying graph, all of which include node 1. In particular, the additional
arcs leave nodes ji,...,jx—1 such that the 1 — j; paths in T for i = 1,...,k — 1 and the 1 — ¢
path in T are all node-disjoint (otherwise, their underlying undirected graph has a cycle that
does not contain node 1, a contradiction to the definition of a base in M ). Therefore, these
paths are node disjoint 1 — ¢ paths. ]

Corollary 5.2 The DIRECTED k-PATH TREE PROBLEM with a special nodes 1,q € V, and
weights that satisfy the triangle inequality is equivalent to finding a minimum weight common
base of the matroids My . and M .

Proof: The proof is similar to that of Theorem 3.2 ]

Theorem 5.3 The DIRECTED k-PATH TREE PROBLEM can be solved in polynomial time

Proof: We use a similar transformation of the graph to the one in the proof of Theorem 3.3.
For each node u € V denote by d(u) the set of arcs that are incident with v in G. Replace
u # 1,q by a set of nodes {u. : e € §(u)}. Each arc (u,v) € A is replaced by an arc (ue,ve)
with the same weight, where v, = ¢ for v = ¢ and u, = 1 for u = 1. We also add zero-weight
arcs (ue, uy) for every u.,uy € 6(u) such that e enters u and f is an arc that leaves u. We now
solve the matroid intersection problem as in the proof of Theorem 5.1. ]

We note that for the matroid intersection problem in which one of the matroids is a partition
matroid there are specialized algorithms given in [5, 9].

We now consider two simple variations of the above problem, and show that (surprisingly)
they are NP-complete.

Theorem 5.4 Given a directed graph with n nodes, and special nodes p and q. Deciding whether
there is a solution to the SND problem with rp; = 1 for all nodes j, and rq, = 1, containing at
most n arcs is NP-complete.



Proof: We use a reduction from the following directed subgraph homeomorphism problem which
was shown to be NP-complete in [7]: Does a given directed graph D with three distinguished
nodes u, v, and w have a simple u — w path which contains v?

Given an instance of this problem we remove all nodes which are not reachable from wu, and
all arcs into u. We also add an arc (w,u) to obtain a directed graph D’. Let D’ have n nodes.
These changes obviously do not affect the existence of the desired path. We define an instance
of SND with r,; = 1 for all j # v and ry, = 1. (In other words v = p and v = ¢.) We claim
that a u — w simple path containing v exists in D if and only if the SND problem has a solution
containing n arcs.

If the SND has a solution, it must use the arc (w,u) since this is the only arc that enters
u, and this is necessary to satisfy the requirement r,, = 1. If it has a solution with n arcs
then it is an arborescences rooted at u and the arc (w,u). Moreover, it is necessary that w is a
descendant of v in this arborescence. This yields the desired path in D.

Conversely, if such a path exists in D then it also exists in D’. It is easy to add arcs to form
an arborescence. This meets the requirements r,; = 1 for all j # w in D’. Add also the arc
(w,u) to meet the requirement r,, = 1. By definition, this solution has n arcs. [ ]

Theorem 5.5 The SND problem with r1, =114 =2 and r1; =1 j # 1,p,q is NP-hard.

Proof: Denote by SND1 the problem defined in Theorem 5.4. We reduce SND1 to this problem.
Given an instance of SND1 with n nodes add a new node 1 with arcs (1,p) and (1,¢). (There are
no other arcs touching node 1.) Call this problem (with 71, = r1; =2 and ri; = 1if j # 1,p,q.)
SND2. We show that there is a solution to SND1 with n arcs if and only if there is a solution
to SND2 with n + 2 arcs.

Any solution to SND2 must use the two new arcs. Since SND2 requires two 1 — p paths,
the other path consists of (1,¢) and a ¢ — p path. Similarly for ¢q. Also SND2 requires a 1 — j
path for every j # 1, p,q. Each such path uses either (1,¢) or (1,p). In either case, there are a
p—7j and a g — j path, possibly using the ¢ — p or p — ¢ paths which must exist in the solution.
Thus, a solution to SND2 with n + 2 arcs consists of a solution to SND1 with n arcs and the
arcs (1,p) and (1,q).

The converse is obvious since any solution to SND1 augmented by the two arcs (1,p) and
(1,q) yields a solution to SND2. u

We note that without the connectivity requirement r1; = 1if j # 1,p, ¢, some variations are
polynomially solvable, while others have been shown to be NP-complete. McCormick [17] proved
that the problem 7y ¢+, = 74,4, = k (r;; = 0 otherwise) on a directed graph is NP-hard, when &
is part of the input. When k£ = 1 Li, McCormick, and Simchi-Levi [16] showed that the problem
is polynomially solvable, and Natu and Fang [20, 21], and Feldman and Ruhl [6] describe more
efficient solutions. The latter authors also proved that the problem is polynomially solvable for
any constant k. A simple modification of the reduction in [16] can be used to show that the
problem is hard even when r,,+, = k and 75,¢, = 1. The reduction also applies when s; = ¢
and sg = t5.

Theorem 5.4 showed that the SND problem with r,; = 1 for all nodes j # p, and 74, =1
is N P-hard. We note that under the triangle inequality assumption, it is trivial to compute a
2-approximation for this problem. Simply compute 7', an optimal directed spanning tree rooted
at p (that is, satisfying r,; = 1 for every j) and add to it the arc (¢,p). Clearly T' < opt and by
the triangle inequality also wg, < opt.

Theorem 5.5 showed that the SND problem with ri, = 1y = 2 and r;; =1 j # p,q is
NP-hard. Under the triangle inequality assumption, there is a simple 2-approximation also for
this problem. We first compute 7', an optimal solution to the directed 2-path tree problem with
nodes 1 and p. If T doesn’t contain the arc (1,q) then we return 7°U {(1,¢)}. Otherwise, let
J = argmin{wy; + wjq : j # 1,q}. If (1,5) € T we return T'U {(j,¢)}. Otherwise, we return
TU{(1,7),(4,9)}. A feasible solution contains two 1 — g paths, one of which may be the arc
(1,q). Therefore, by the triangle inequality, opt > w1; + wj,. It is easy to see that the solution



is feasible and since the weight of T" is a lower bound on opt and also the added arc weight at
most opt, the result is a 2-approximation.

Melkonian and Tardos [18] give a factor 2 approximation for the directed SND problem
when the requirement function f is crossing supermodular, i.e., for every A, B C V such that
ANB# D and AUB #V we have f(A) + f(B) < f(ANB)+ f(AU B). (Recall, the minimum
number of arcs leaving S is defined to bef(S), the requirement.) We note that f for the SND
problem with 71, = rig =2, 11; =1 j # 1,p,q is not crossing supermodular. Let A = {1, p},
and B = {1,q}. Then f(A) = f(B) =2, f(ANB) = f({1}) = 2, but f(AUB) = f({L,p.}) = 1
violating the supermodularity. Similarly, for the SND with rq, = 1 and r,; = 1 for all j # p
f is not crossing supermodular. Let A = {p,a} and B = {q,a} for some a # p,q. Then
F(A) = f(B) = F(AUB) = 1 but f(AN B) = f({a}) = 0.

6 Concluding remarks

We extended the range of network network design problems that can be solved in polynomial
time. The next simplest problem involves in the undirected case r;; = 2 for 4,5 € S where
|S| =3, and r;; = 1 otherwise, for which we have given an approximation algorithm. However,
we do not know whether the problem is NP-complete or polynomial.

Another open problem is to extend our approximation results. For example, given two sets
of nodes S,T C V (not necessarily disjoint), we wish to have connectivity r; ; = 2 for i,j € S,
r;; = 3 fori,7 € T, and r; ; = 1 otherwise. The goal would be to give bounds better than 2,
which was obtained by Jain [14]. We illustrated possible applications of the k-path tree matroid
by giving approximation algorithms for two cases: |S| < 5 and T = @) and for the case S = ()
|T'| = 3. Techniques similar to those of Section 4 may yield such algorithms.

For the directed graph case one could ask about the approximability without the assumption
of triangle inequality, and whether a better factor exists with this assumption.
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