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Abstract 

We describe an elementary version of the beautification problem in one dimension and show that it is 

NP-complete. 

1. Introduction 

An important problem in the design of a computer-aided design system is that of “beautifying” the user’s 

input. Geometric information is input through a sequence of mouse clicks which are not perfectly positioned. 

The result is that figures are not as “neat” or “perfect” as they may have been intended. Indeed, most 

designed objects have a great deal of symmetry, and different objects are usually aligned. The beautification 

problem is to interpret user input in a way that best approximates his “intentions”. 

This problem has been addressed by many researchers and a common approach takep is the design of 

heuristics that try to maximize the “beauty” of an illustration by maximizing one particular measure or a 

combination of several measures. One simple and often used heuristic is the so-called “snapping” method. 

For example, “snap to grid” methods place a grid in the plane, and points input by the user are interpreted 

as (snapped to) the closest grid point to them. This method, although simple, has many drawbacks (e.g. 

not preserving colinearity). A more sophisticated approach was taken by Pavlidis and Van Wyk [PV]. 

They considered the lengths and angles between the line segments of an illustration and tried to create 

drawings that contain many equal-length segments, right angles, and parallel line segments. Their heuristics 

were designed and tested using clustering techniques. In this note we try to address the problem from the 

computational complexity point of view, analyzing how hard is it to beutify a drawing according to one 

simple measure. 

We make our problem more precise by specifying that the automatic beautifier is allowed to alter the 

location of a point by at most a distance e .  (This can be thought of as the error tolerance.) Subject to this 

tolerance, the problem is to maximize the “beauty” of the input drawing. Several definitions of beauty are 

possible, leading to a variety of objective functions. Here, we focus on the problem of inputting a set of 

points, and we concentrate on the one-dimensional case (which must be solved in order to solve the more 

interesting two-dimensional case). Our definition of beauty is the (negative of the) number of distinct lengths 

of intervals between consecutive points. (We negate the number since we maximize beauty, but we want to 
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minimize the number of interval lengths.) Our main result (given in section 2) is a proof that minimizing the 

number of interval lengths is NP-complete. This implies that many of the problems we may want to solve in 

two dimensions are also NP-complete. In particular the corresponding twedimensional problem would be 

defined as the number of different lengths of edges in the Delaunay triangulation, a measure suggested by 

Huttenlocher and Mitchell [HM]. 

2. The main theorem 

In this section we present our main result, namely that the one-dimensional beautification problem is NP- 

complete. For the definition of NP-completeness see [GJ]. 

Problem: 1-Dimensional Beautification 

Instance: Given N rational points on the line X I ,  x2,. . . , XN such that XI < 2 2  < . . . < XN,  a rational E > 0 

and an integer k. 
Question: Do there exist rational points y1, y2,. . . , YN such that yl 5 y2 5 . . . 5 YN Ixi - YjI  5 E for all 

1 5 i 5 N, and the number of different size intervals of the form yj+l - yj is less than or equal to k? We 

refer to the minimum such k for which the answer is “yes” as the beautification number. 

Theorem I-Dimensional Beautification is NP-complete. 

Proof: It is not hard to see that the problem is in NP. Simply “guess” a set of N labels (e.g., “a, b, a, a, 

c,  c ,  b, b, a”) that indicate which intervals will be of the same lengths, and then check the resulting system 

of linear equations and inequalities for feasibility. 

To show completeness we reduce One-In-Three 3SAT, a problem known to be NP-complete [GJ], to the 

problem at hand: 

Problem: One-In-Three 3SAT 

Instance: Set U of variables, collection C of clauses over U such that each clause c E C has Icl.= 3. 

Question: Is there a truth assignment for U such that each clause in C has exactly one true literal? 

Let n be the number of variables in U. Set k = 2n + 3 and fix 0 < 6 < 113. Next, we describe the 

gadgets that go into our construction. Each gadget will consist of several consecutive xi’s. For simplicity, 

gadgets will be described as if the first xi is set to some arbitrary location, or else we will give the interval 

lengths xj+l - xj instead of the location of the individual points. The gadgets will all be placed on the line 

one after the other so we need only shift each gadget in its entirety by the appropriate amount. 

Gadget “set endpoint” : 

This gadget consists of 3 points xj,xj+l and xj+2 such that xi = 6 ,  xj+l = B - E and Xj+2 = 2 B  + E, 
where B is an integer greater than 2n. This gadget will appear in all other gadgets and its purpose is to 

2 



ensure that the endpoints of all other gadgets are "rigid". This is accomplished if we notice that the two 

intervals in this gadget can be of equal y length (meaning that yi+1 - yi = yi+2 - w + 1 )  if and only if we 

set yi = 0, yi+1 = B and yi+2 = 2B. Thus we can think of the endpoints xi and xi+2 as setting the points 

yi and yi+2 at a fixed position on the line. In particular, both endpoints will be shifted by E to the left, 

meaning that yi = xi - E and yj+z = xi+2 - E .  

8 -  t 2 B +  f y .* € 
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Gadget "set interval lengths A + e and A - 2': 

Here A is an integer greater than 2n but not equal to B. This gadget consists of three set endpoint 

gadgets. The distance between the first and second set endpoint gadgets is A - 36 (meaning that if xi 

is the third point of the first set endpoint gadget and xi+l is the first point of the second gadget then 

zi+l -xi = A - 3e.) Similarly, the distance between the second and third set endpoint gadget is A+  3e. Note 

that there is no way to make the two corresponding y intervals between the first and second set endpoint 

gadgets equal the distance between the third and second ones (and clearly neither can be made equal to B, 
an interval length that already exists.) Thus, the best we can do so far is to have three different interval 

lengths. If in addition we reverse the second set endpoint gadget so that the two xi intervals in it are B + 2~ 

and B - 2e in that order (rather then the reverse order which was defined), we ensure that the three y 

interval lengths we get are B, A + e and A - E .  (In addition we will have an interval length corresponding 

to each variable and its negation yielding the k = 2n + 3 required.) 
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Variable gadgets: 

For each variable uj we describe two gadgets. The first will consist of two set endpoint gadgets with a 

distance of 2n between them, and one additional point between the two set endpoints at distance j - E from 

the first (and hence 2n - j + E from the second). This gadget determines whether the variable is true or 

false. The next gadget we will describe shortly will ensure that there are only two possible placements for 

the y point corresponding to  the additional x: One yields y interval lengths j - E and 2n - j + E ,  which we 

will interpret as variable U j  being true; and the other placement yields lengths j + E and 2n - j - E ,  which 

we will interpret as the variable uj being false. (Recall that, because of the set endpoint gadgets, the sum 

of lengths of the tyo y intervals must be exactly 2n.) 

I I I 
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The second gadget (that ensures only two possible placements) also consists of two set endpoint gadgets 

with an additional point between them. The set endpoints are distance j + A apart. The additional point 
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is located at distance j - E from the first set endpoint (and hence A + E from the second). Recall that we 

already described one gadget involving an interval of length almost A. In fact we argued that the lengths 

of almost-A intervals are limited to A + E and A - E .  Unless we are to create more almost-A y intervals 

(which we can not afford to do), we are forced to have the y interval whose length is almost j be equal to 

j - E or j + E .  (This, in turn, will force the y interval of length almost 2n - j to be 2n - j + E or 2n - j - E 

remectivelv.) 

Clause Gadgets: 

Let Ci be the clause ( l i l ,  l i 2 ,  Ii3) where l i j  is a variable or a negation of one of length almost l i ,  (meaning 

that if li, is a variable ut,  its length is almost t ,  and if l i j  is the negation of a variable ut,  then its length 

is almost 2n - t ) .  The gadget corresponding to Ci consists of two set endpoint gadgets that are at distance 

lil + l i z+ l i3+e .  There are two additional z points, the first at distance l i l - ( 2 ~ ) / 3  from the first set endpoint 

gadget, and the second z point at distance l i 2  + €13 from the first x point (and hence li3 + ( 4 ~ ) / 3  from the 

second set endpoint). Recall that the x endpoints of a set endpoint gadget will determine y points that are 

shifted by E to the left. After this shift we have created three intervals of length l i j  + €13 each. So as not to 

create new y interval lengths, we are forced to have two of the literals be of length l i j  + E and one of length 

l i j  - E ,  meaning that exactly two of the literals in the clause are false and one is true. 

To complete our construction we "string" all the gadgets (two per variable, one for each clause and the 

"set interval lengths A + E and A - E" )  along the line by making the last point of one gadget be the first 

point of the next. The order in which we put these gadgets does not matter. Clearly this construction can 

be completed in polynomial time. 

As we have argued throughout, the only possible way to get a beautification number at most (in fact 

exactly) 2n + 3 is to have y interval sizes B, A + E ,  A - E ,  and for each variable u j  two lengths: j - E and 

2n - j + E ,  or j + and 2n - j - E. In the first case we set variable u j  to be true and in the second case to be 

false. This assignment is well defined (i.e., no variable is assigned both true and false). If indeed there are 

only 2n + 3 different length y intervals we can conclude that the gadgets corresponding to clauses did not 

generate any new lengths (beyond those obtained by the variable gadgets already mentioned), implying that 

each clause has one true literal and two false ones. This is the case because the total y length of a clause 

gadget must be l i l +  4 2  + li3 + E .  Thus we have shown that at most 2n + 3 different length intervals implies a 

truth assignment as required by One-In-Three 3SAT. The converse is easy to see: Given a truth assignment, 

set the lengths of intervals corresponding to literals appropriately and the resulting beautification number 

will be 2n + 3.  I 
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3. Conclusion 

It is important to note that although we have shown that the l-dimensional beautification problem is NP- 

complete, many simple heuristics come to mind that will probably perform quite satisfactorily in practice. In 

particular, the construction used to show the problem NP-complete by proving that a formula is satisfiable 

if and only if we can restrict the number of different length intervals to 2n + 3 (n is the number of variables) 

can be beautified using 2n + 5 different length intervals whether the formula is satisfiable or not! 

A trivial lower bound on the beautification number is the following: Define ai = xi - zi-1 and solve 

the problem of finding new numbers b l ,  . . . , bk minimizing k ,  such that for each ai there exists a bj for which 

lai - bj I 5 2r (i.e., find a minimum cardinality cover of the ai’s). Clearly this problem can be solved optimally 

in linear time after sorting the ai’s. F’urthermore, k is a lower bound on the original beautification problem. 

If we drop the restriction that we must have y1 5 y2 5 . . . 5 y~ (i.e., we allow the y’s to “cross over”) then 

we have a trivial upper bound on the beautification number k + 4 2 .  It remains to be seen what better 

bounds can be obtained, how simple heuristics perform in practice, and how they may extend to the more 

interesting 2-dimensional case. 
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