Numerical modeling and simulation of flow through porous fabric surface

Zheng Gao Xiaolin Li

Applied Mathematics and Statistics

Stony Brook University
Background

- What is porosity and permeability
 - Porosity is a measure of void spaces in a material between 0 and 1
 - Permeability is a measure of the ability of a porous material to transmit fluids.
 - Permeability is not only dependent upon the porosity of the fabric

- Why porosity is important
 - Affect the stability of parachute system

- Challenge for porosity simulation
 - Different scales:
 - parachute diameter ~ 10 m;
 - pore size < 1 mm
 - Fluid-structure interactions
Methodology

- Previous method
 - Model the microstructure and solve the fluid equation at the pore level
 - High computational cost, especially for parachute

- Our method
 - Consider the average aerodynamic motion of canopy surface
 - Low computational cost, robust, easy to be coupled with the current fluid solver

Numerical Model

- Canopy is modeled with spring mesh
 - Incompressible fluid is solved with projection algorithm
 - Interactions are treated with front tracking method
 - The pressure drop is modeled with Ghost fluid method (GFM)
 \[[p]_\Gamma = \alpha u_\Gamma \cdot n + \beta |u_\Gamma \cdot n| u_\Gamma \cdot n \]
 - Couple GFM with projection method
 - Adding source term to the pressure (Poisson) equation
 - Not affect the symmetry of the coefficient matrix, easy to converge with KSP iterations

Fig. define the two domains
Verification

- Verify the pressure difference
- Put a porous surface on the channel
- Verify pressure difference and velocity profile

Fig. porous surface in the channel

Fig. velocity profile

- $X = 1\text{m}$ and 3m

Fig. pressure profile

- $X = 2\text{m}$
Validation

- Verify the Darcy’s law
 - Correct method should be able to reproduce the quadratic relationship between pressure drop and velocity

Parachute Simulation

- Calculate drag force and drag coefficient

Fig. Parachute channel test

Fig. drag force

Fig. drag coefficient
Comparison

- Vorticity field with and without porosity

Fig. drag force with and without porosity
Summary

- Proposed a numerical scheme for the computation of permeability of the parachute and its dynamic response
- Coupled projection method and GFM in the front tracking framework.
- Advantages: efficient and robust
- Future: fully folded parachute inflation, robust fabric collision treatment
Acknowledgment

- We would like to thank Dr. Joseph Myers to foster the communication between university faculty and army and Air Force scientists.
- We would like to thank Dr. Richard Charles as our Army scientific advisor.
- This work is supported in part by the US Army Research Office under the award W911NF1410428 and the ARO-DURIP Grant W911NF-15-1-0403.
- Thanks for your kind attention