1 Shortest Path Algorithm

Problem 1. Given graph $G = (V, E)$ and length (or weights) $w(u, v)$ on each edge, find (length of) shortest path from source s (to target t)

Definition 2. length of path = $\sum_{(u,v)} w(u, v)$

2 Dijkstra's Algorithm

Dijkstra's algorithm solves the single-source shortest-paths problem on a weighted graph for the case in which all edge weights are nonnegative.

Basic idea: The algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined. Then, repeatedly selects the vertex $u \in V - S$ with the minimum shortest-path estimate, adds u to S and relaxes all edges leaving from u.

First, initializing algorithm:

$dijkstra (G, s, t) $(V, E) = G$
for $v \in V$

$d[v] = \infty, \pi[v] = \bot$

d[s] = 0, $q = \{(0, s)\}$

Here $d[\cdot]$ is the shortest distance to source s and q stores elements going to be processed which is represents as (distance to s, vertex). And $\pi[v]$ is the previous vertex of v.

3 Depth-First Search/Breadth-First Search

The following part of Dijkstra's algorithm is find to the vertex c in $V - S$ with shortest distance to s; add c in S; then update all the vertices’ distance in $V - S$ which is connected to c. The process can be summarized as:
while $q \neq \emptyset$
 \[c = q.\text{extractMin}() \quad O(|V|) \]
 \[\text{if } c == t \]
 \[\text{return } (d, \pi) \]
 \[\text{for each edge } (c, v) \in E \]
 \[\text{relax } (c, v, q) \]
\[\text{return } (d, \pi) \]

The following algorithm describes the relax process:

\[\text{relax } (u, v, q) \]
 \[\text{if } d[u] + w(u, v) < d[v] \]
 \[q.\text{update} (v, d[v] + w(u, v)) \]
 \[d[v] = d[u] + w(u, v) ; \]
 \[\pi[v] = u \]
 \[\text{return } \text{true} \]
\[\text{return } \text{false} \]

The following algorithm describes the update process:

\[(d[v], v) \in q \]
\[q.\text{update} (v, \text{oldd}, \text{newd}) \]
\[q.\text{delete} (\text{oldd}, v) \]
\[q.\text{insert} (\text{newd}, v) \]

Figure 3.1: Process of relaxing
Proposition 3. At all times $\forall u, d[u] \geq d(s, u)$.

Proof: (by mathematical induction)
True at start ($d[u] = \infty$).
Suppose true at start of relax, so $d[v] \geq d(s, v)$. Afterwards,

$$d[v] = d[u] + w(u, v) \geq d(s, u) + w(u, v) \geq d(s, v)$$

the conclusion is proved.

Proposition 4. Let $s = c_1, c_2, \cdots, c_n$ be the sequence of vertices obtained by extractMin(). Then $d(s, c_i) \leq d(s, c_{i+1})$. If $v \notin \{c_1, \cdots, c_k\}$, then $d(s, v) = \infty$.

Proof: (by contradiction)
Let v be the closest element to s such that the above conclusion fails.

- Case 1 $d(s, v) < 0$ but $v \in \{c_1, \cdots, c_k\}$
 - consider shortest path $s \to v' \to v$, so $d(s, v') < d(s, v)$
 - By induction, $v' \in \{c_1, \cdots, c_k\}$
 - by reading code, must have relax(v', v)
 - At that time, would insert v into q.

- Case 2 $v = c_i$
 - case a: $d(s, c_i) > d(s, c_{i+1})$
 * consider shortest path $s \to v' \to c_{i+1}$
 * Now $v' = c_j$ for some j. By ordering $j < c_i$, after c_j, $d[c_{i+1}] = d(s, c_{i+1})$
 * Then $d[c_{i+1}] < d(s, c_i) \leq d[c_i]$
 * so c_{i+1} extracted before c_i.
 - case b: $d(s, c_i) < d(s, c_{i+1})$
 * the proof process is same

- Case 3: $d[v] \neq d(s, v)$ when v extended, look at shortest path $s \to v' \to v$.
 By ordering, v' extended before v and $d[v'] = d(s, v')$ when it is extracted.
 This relax would update $d[v] = d[v'] + w(v', v) = d(s, v') + w(v', v) = d(s, v)$