1 Content

The major content of the lecture:

- Last classes: AVL trees, splay trees
 - detailed implementation
 - $O(\log n)$ guaranteed all ops
 - simple randomized
 - $O(\log n)$ w.h.p. expected
- Treaps
- Skip Lists

2 Heap and Treap

Tree: all left descendants of a node are smaller than that node and all right descendants are larger.

Definition 1. Heap: A specialized tree-based data structure, with each node is smaller than all its descendants.

2.1 Treap

To maintain a dynamic set of ordered keys and allow binary searches among the keys, introduce data structure treap.

Definition 2. Treap: A tree in which each key is given a randomly chosen numeric priority. The structure of the tree should be determined by the priority in heap-ordered.

Example 3. A treap example is in Figure 2.1 which has letters as keys and random number as priorities. Keys are ordered as BST and priorities are ordered as heap.
Insert(key):
1. Choose a random “priority” that is paired with key, i.e. (key, priority).
2. Insert keys like normal BST
3. Rotate up until the priority obeys heap priority

Example 4. Insert (C,9) in above example.

Proposition 5. Treap: Same as if we initially ordered elements by priority and inserted into BST.

The algorithm to delete keys can be summarized as:
Delete(key)
1. Find key
2. Rotate until leaf
3. Once leaf delete
2.2 Analysis

Assume

\[A_i^k = \begin{cases} 1 & \text{if } x_i \text{ is ancestor of } x_k \\ 0 & \text{else} \end{cases}, \]

then

\[\text{depth}(x_k) = \sum_{i=1}^{n} A_i^k. \]

Theorem 6. \(x_i \) is ancestor of \(x_k \) iff \(x_i \) has the smallest priority in \(\{x_i, \cdots, x_k\} \) or \(\{x_k, \cdots, x_i\} \).

Proposition 7. The depth of treap is \(O(\ln n) \) w.h.p.

Proof:

\[P(A_i^k = 1) = \frac{1}{k - i + 1} \text{ or } \frac{1}{i - k + 1} \]

\[E[\text{depth}(x_k)] = \sum_{i=1}^{n} E[A_i^k] = \sum_{i=1}^{k-1} \frac{1}{k - i + 1} + \sum_{i=k+1}^{n} \frac{1}{i - k + 1} \]

\[= \sum_{j=2}^{k} \frac{1}{j} + \sum_{j=2}^{n} \frac{1}{j} \]

\[E[\text{depth}(x_k)] = \sum_{j=1}^{k-1} \frac{1}{j} + \sum_{j=1}^{n-1} \frac{1}{j} \]

\[= H(k - 1) + H(n - k - 1) \]

\[\leq \ln (k - 1) + \ln (n - k - 1) + 2 \leq 2 \ln n + 2 \]

Theorem 8. Operations based on treap take \(O(\ln n) \) w.h.p.

3 Skip List

Proposition 9. Link list takes \(O(n) \) to realize find, insert, delete etc.

Definition 10. Skip list is a data structure for storing a sorted list of items using a hierarchy of linked lists than connect increasingly sparse subsequences of the items.
Example 11. A practical example is the Number 1 subway line in NYC. A local train will go through:

14 → 23 → 34 → 42 → 50 → 59 → 66 → 72 → 79

however, the express only goes through:

14 → 34 → 42 → 72

which is a skip list of the original link list.

Assume there are \(L_1 \) elements in list 1 (number of local stops), there are \(L_2 \) elements in list 2 (number of express stops). If the express stations are relatively evenly scattered, then the stations between express stops are \(\frac{L_1}{L_2} \). Thus the maximum number of stops to reach some specific station is

\[
L_2 + \frac{L_1}{L_2}
\]

to minimize this number, assume \(L_1 = n \), then

\[
\min \left(L_2 + \frac{n}{L_2} \right) \Rightarrow L_2 = \sqrt{n} \Rightarrow L_2 + \frac{L_1}{L_2} = 2\sqrt{n}
\]

The steps for implementing insert are:

1. Find where goes
2. Insert into bottom list

Algorithm:

\[
\text{whilt (coin flip = heads)}
\text{ insert the element into next list }
\]

Then, we have

\[
P(\text{X is at level } \geq l) = \frac{1}{2^l}
\]

\[
P(\text{Any element level } \geq l) \leq \frac{n}{2^l}
\]
assume

\[l = c \log n \]

thus

\[P(\text{Any element level} \geq l) \leq \frac{n}{2^c \log n} = \frac{1}{n^{c-1}} = \frac{1}{n^\alpha}. \]

Theorem 12. There are \(O(\log n) \) levels in skip list w.h.p.