Numerical dissipation and dispersion.

\[V(x,t) = V e^{i(\omega t + \beta x)} \]

- \(\omega \): frequency of the wave
- \(\beta \): wave number

\[V_t + \alpha V_x = 0 \quad \text{wave equation} \]

- \(\omega = -i \beta^2 \): dispersion relation
- wave doesn't move.
- decays with time, dissipation.

\[V(x,t) = V e^{i(\omega t + \beta x)} \]

- no decay of the amplitude.
- wave move with a speed independent of frequency and wave number.

Numerically introduced decay and propagation is numerically dissipation and dispersion.
dissipation: Fourier modes decay with time

 dispersion: modes of different wave number propagate at different speed.

 PDE contains only even ordered x derivative
 - dissipative
 \[V_t = D V_{xx} \]

 PDE contains only odd ordered x derivative
 - non dissipative
 - dispersive if order is greater than 1.
 \[V_t + a V_x = 0 \quad \text{and} \quad V_t = D V_{xxxx} \]

 Hyperbolic equation.

 FD. \[u_t + a u_x = D u_{xx} + \cdots \]
 numerical dissipation.

 FD. \[u_t + a u_x = A u_{xxxx} + \cdots \]
 numerical dispersion.
Upwind: \(D_n = \frac{1}{2} a \Delta x \left(1 - R_1 \right) \).

L-F: \(D_n = \frac{1}{2} \frac{\Delta x^2}{\Delta t} \left(1 - R^2 \right) \).

L-F is more dissipative than upwind.

Centered implicit:
\(D_n = \frac{1}{2} a \Delta x \).

First-order schemes introduce numerical dissipation.

Leapfrog: \(\lambda = \frac{a}{6} (R^2 - 1) \Delta x^2 \).

L-W: \(\lambda = \frac{a}{6} (R^2 - 1) \Delta x^2 \).

C-N: \(\lambda = -\frac{1}{6} a \Delta x^2 \).

C-N is more dispersive than L-W.
Tridiagonal system of equations

\[A\mathbf{u} = \mathbf{d} \]

\[A = \begin{pmatrix}
 b_1 & c_1 & 0 & \cdots \\
 a_2 & b_2 & c_2 & 0 & \cdots \\
 0 & a_3 & b_3 & c_3 & \cdots \\
 \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}_{N \times N} \]

\[\mathbf{u} = \begin{pmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_{N-1} \\
 u_N
\end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_{N-1} \\
 d_N
\end{pmatrix} \]

\[U_{i+1} = A_i u_i + B_i, \quad i = 1, \ldots, N-1 \]

\[A_{N-1} = -\frac{a_N}{b_N}, \quad B_{N-1} = \frac{d_N}{b_N} \]

\[A_{i-1} = \frac{-a_i}{A_i c_i + b_i}, \quad B_{i-1} = \frac{d_i - B_i c_i}{A_i c_i + b_i}, \quad i = 2, \ldots, N-1 \]

1. \[\{ a_1, b_1 \} \quad \ldots \quad \{ a_{N-1}, b_{N-1} \} \]
2. \[u_i = \frac{d_i - B_i c_i}{A_i c_i + b_i} \]
3. \[u_{i+1} = A_i u_i + B_i. \quad \Rightarrow \quad \mathbf{u} \]