Chapter 1. Making decisions

Population, Sample

Statistical inference

Hypothesis's

- Null hypothesis H_0
- Alternative hypothesis H_1

Note: H_0, H_1 are statements about the same population.

Statistically significant (supporting H_1)

\rightarrow Reject H_0

1.3.3 What errors could we make?

Definition:

- **Type I error**: rejecting H_0 when in fact it is true.
- **Type II error**: accepting H_0 when in fact it is not true.

<table>
<thead>
<tr>
<th></th>
<th>H_0 is true</th>
<th>H_1 is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept H_0</td>
<td>no error</td>
<td>Type II</td>
</tr>
<tr>
<td>reject H_0</td>
<td>Type I</td>
<td>no error</td>
</tr>
</tbody>
</table>
Tip: Type I error may only happen when \(H_0 \) is true.

How to select \(H_0 \)?
- \(H_0 \): \text{innocent}.
- \(H_1 \): \text{guilty}.

No type I error \(\rightarrow \) never reject \(H_0 \).

Ex. 1.4 - Rain
- \(H_0 \): Tonight it is going to rain.
- \(H_1 \): Tonight it is not going to rain.

Type I error: In fact it is going to rain, but you decide that it is not.
 - didn't bring umbrella.
 - got wet.

Type II error: In fact it is not going to rain but you decided that it is.
 - did bring umbrella.
Let's do it. 1.5 Testing a new drug

Ho: The new drug is as effective.
Hi: The new drug is more effective.

Type I error:
Conclusion that the new drug is better when it's not.

Type II error:
Concluded that the new drug is no better when it is actually better.

\[\alpha = \text{level of significance} \]
\[= \text{the chance of a Type I error occurring} \]
\[= \text{the chance of rejecting } H_0 \text{ when it's true} \]
\[\beta = \text{the chance of a Type II error occurring} \]
\[= \text{the chance of accepting } H_0 \text{ when it is not true} \ (H_1 \text{ is true}) \]
Type II error = accept H_0 when H_1 is true

= decide that the shown bag is Bag A when it is Bag B

= (kept the other bag, Bag A)
 must pay $560

<table>
<thead>
<tr>
<th>Free Value</th>
<th>Bag A</th>
<th>Bag B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1000</td>
<td>1/20</td>
<td>0</td>
</tr>
<tr>
<td>$10</td>
<td>7/20</td>
<td>1/20</td>
</tr>
<tr>
<td>$20</td>
<td>6/20</td>
<td>1/20</td>
</tr>
<tr>
<td>$50</td>
<td>2/20</td>
<td>2/20</td>
</tr>
<tr>
<td>$40</td>
<td>2/20</td>
<td>2/20</td>
</tr>
<tr>
<td>$50</td>
<td>1/20</td>
<td>6/20</td>
</tr>
<tr>
<td>$60</td>
<td>1/20</td>
<td>7/20</td>
</tr>
<tr>
<td>$1000</td>
<td>0</td>
<td>1/20</td>
</tr>
</tbody>
</table>

Definition:

The **direction of extreme** corresponds to the position of the values that are more likely under the alternative hypothesis H_1 than under the null hypothesis H_0.

If larger values are more likely under H_1 than the direction of extreme is said to be to the **right**.
Decision Rule 1:
Reject \(H_0 \) if you select a $60 or $1000 voucher, otherwise accept \(H_0 \).
\[
\begin{align*}
& \geq 60 \quad \text{reject } H_0 \\
& < 60 \quad \text{accept } H_0.
\end{align*}
\]

\(\alpha \) = significance level
= chance of rejecting \(H_0 \) when \(H_0 \) is true

= chance of selecting $60 or $1000 from Bag A.
= \(\frac{1}{20} = 0.05 \)

\(\beta \) = chance of accepting \(H_0 \) when \(H_1 \) is true

= chance of selecting < $60 from Bag B.
= \(\frac{12}{20} = 0.6 \)
Definition:
A rejection region is the set of values for which you would reject H_0. Such values are favor the H_1.

An acceptance region is the set of values for which you would accept H_0.

The cut-off value or critical value is the value which marks the starting point of the set of values that comprise the rejection region.

Decision rule #1: 60

cut-off value should work with direction of extreme

Decision Rule 2:
Reject H_0 if $x \geq 60$. < 60 accept H_0.

x = chance of selecting ≥ 60 from bag A.
$= \frac{3}{20} = 0.1$

β = chance of selecting < 60 from bag B.
$= \frac{17}{20} = 0.3$
Decision Rule 3:

Reject H_0 if $\bar{y} \geq \$40$

$\alpha = 0.05$ accept H_0

$\beta = < \$40$ from Bag A

$= \frac{4}{20} = 0.2$

$\beta = < \$40$ from Bag B

$= \frac{4}{20} = 0.2$

Summary of the relationship between
the decision rule and the significance level

Decision Rule \rightarrow Significance Level
(given cutoff value)

Significance Level \rightarrow Decision Rule
(find cutoff value)

$\alpha = 0.1$ given \rightarrow decision rule 2

Definition:
A rejection region is called one-sided if
the set of extreme values are all in one direction.
A rejection region is called two-sided if
the set of extreme values are in two directions,
both to the right and to the left.