Chapter 2 Producing Data

2.1 Introduction

Scientific method

1. Formulate a theory
2. Collect data to test the theory
3. Analyze the results
4. Interpret the results and make decisions.

Interpret results & make decision (1, 9, 10, 11)

Formulate theories

Collect data (2, 3)

Summarize results (4, 5, 6)
2.2 Why Sample?

Census - a sample consisting of the entire population.

2.3 The Language of Sampling.

Population - the entire group of objects or individuals under study, about which information is wanted.

Unit - an individual object or person in the population.

Subject (people) - a part of the population that is actually used to get information.

Variable - a characteristic of interest to be measured for each unit in the sample.

Parameter - a numerical value that would be calculated using all of the values of the units in the population.

Statistic - a numerical value that is calculated using all of the values of the units in a sample.
Notation:
\[N \] - size of the population.
\[n \] - size of the sample.

\[N = 13 \]
\[n = 3 \]

Example: 60% of students own computers. 5290 enrolled. 1%
(a) \[N = 5290 \] \[n = 53 \]
(b) What is the parameter? (proposed) 60%
(c) What is the variable? Percentage of students own computer.
(d) What statistic will I obtain? 0% out of 53.

Important:
- Parameter is a fixed quantity.
- Statistic will vary from sample to sample.
2.4. Good Data?

Our goal - produce accurate estimates.
Our enemy - Bias

Bias: a systematic prejudice in one did

Convenience sample
Volunteer sample

Probability sampling method -

A sample method that gives each unit in the population a known nonzero chance of being selected. (good method)

Selection bias - systematic tendency on the part of the sampling procedure to exclude or include a certain type of unit.

Non-response bias
Response bias

Ex: Whether or not own computer?
only full-time students on my list.

Selection bias.
2.5 Simple Random Sampling

Simple random sample of size \(n \): a sample of \(n \) units selected in such a way that every possible sample of the given size \(n \) has the same chance of being selected as any other sample of size \(n \).

How to obtain a random sample:

1. Number the elements in the population.
2. Generate \(n \) random numbers using either a random number table (p. 100) or the calculator random number feature.

Ex: choose the first 10 students to be in the sample using the random number table. \(N = 60, n = 10. \)

1. Assign labels 01 to 60 for each student.
2. Read off random labels.

Row 2: 21468, 46573, 25595, 85393, 30995, 89198, 27982, 53162, 93965, 34095, 99, 55, 98, 27, 98, 39, 53, 68, 58, 73, 25, 59, 58, 93, 20...
2.6 Stratified random sampling
mutually exclusive

2.7 Systematic Sampling
1-in-k systematic sample

2.8 Cluster Sampling
divided into clusters
choose clusters

Chap 3. Observational Study & Experiments

3.3 The Language of Studies

Types of Studies:
1. Designed experiment: actively imposing treatments.
2. Observation study: simply observes.

Survey: observational study.

Types of Variables:
1. Explanatory variable (factor). A variable that is thought to explain the changes in the response variable (independent...
2. Response variable \(Y \) measures the outcome of the study and depends on the explanatory variable (dependent).

Explanatory \(\rightarrow \) Response

\(V_1, V_2 \):

\(V_1 \rightarrow V_2 \)
\(V_2 \rightarrow V_1 \).

Ex: \(V_1 \): weight of a package.
\(V_2 \): postage rate.

\(V_1 \rightarrow V_2 \) --- \(V_2 \) -- response

Levels of a factor are the possible values of the explanatory variable.

A treatment is a specific combination of the levels of the explanatory variables.

Ex: curvature of copper plates depends on temperature & copper content.

\(T \): 50\(^\circ\)C, 75\(^\circ\)C, 100\(^\circ\)C, 125\(^\circ\)C.

\(P \): 40\%, 60\%, 80\%.

Two observations for each treatment.
1. Response variable: amount of curr
2. Explanatory variables:
 - Temperature: 50°C, 75°C, 100°C, 125°C
 - Copper content percentage: 40%, 60%, 80%
3. $3 \times 4 = 12$ treatment combinations
4. $2 \times 12 = 24$ observations
5. Experiment

Compounding variables - a variable whose effect on the response variable can't be separated from the effect of the explanatory variable.

3.4. Understanding Observational Study

- Retrospective study (past event) ←
- Prospective study (ongoing or future) →

Disadvantage: simply observe

- Can not control the explanatory
- Can not control compounding variable

Experiments:

Pros: no compounding variables
Cons: cost, feasibility, ethics
3.5 Understanding experiments. Design layout table.

Ex.

<table>
<thead>
<tr>
<th>Copper content</th>
<th>50°C</th>
<th>75°C</th>
<th>100°C</th>
<th>20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>60%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>80%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Basic principles for design of experiment:

1. Control: two groups (compounding effects)
2. Blinding: Placebo
3. Randomization
4. Replication: at least 2 units for each treatment