10. Population Mean

\[\bar{X} \] \text{ sample \ mean} \n
\[\mu_{\bar{X}} = \mu, \quad \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \]

If population has normal distribution:
\[X \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \] \text{ any sample size}

If population not normal, but \(n \geq 30 \)
\[X \sim \text{approx.} \quad N(\mu, \frac{\sigma}{\sqrt{n}}) \]
\text{(central limit theorem)}

10.2. Hypothesis testing about \(\mu \).

1. Assume \(\sigma \) is known. (not practical)

\[H_0: \mu = \mu_0 \quad \text{vs.} \quad \left\{ \begin{array}{l}
H_1: \mu > \mu_0 \\
H_1: \mu < \mu_0 \\
H_1: \mu \neq \mu_0
\end{array} \right. \]

\[Z \text{-test statistic} \quad Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \]

obtain the p-value \[Z \sim N(0,1) \text{ standard normal} \]
For $H_1: M > M_0$ (to the right),
p-value = area to the right of z

For $H_1: M < M_0$ (to the left),
p-value = area to the left of z

For $H_1: M \neq M_0$ (two sided),
p-value = $2 \times$ area to the left of $-|z|$

With p-value and required α,
If p-value $> \alpha$, \rightarrow accept H_0
If p-value $\leq \alpha$ \rightarrow reject H_0. Take it,
"Statistically significant."

1. the value of σ is unknown (practical)
 Sample standard deviation s
The distribution of that T variable is called a **Student's t-distribution with $n-1$ degree of freedom**.

Obtain the p-value as follows:

For $H_0: \mu = \mu_0$ (to the right):

- p-value = area to the right of t with df. = $n-1$

For $H_0: \mu < \mu_0$ (to the left):

- p-value = area to the left of t with df. = $n-1$

For $H_0: \mu \neq \mu_0$ (two sided):

- p-value = 2 x area to the left of $|t|$ with df. = $n-1$
Features of \(t \)-distribution:
1. Symmetric, Bell shaped with mean = 0
2. Flatter with heavier tails than \(N(0,1) \)

\[
\begin{align*}
&\begin{array}{c}
t(x) \\
\end{array} \quad \begin{array}{c}
N(0,1) \\
\end{array} \\
&\quad \quad \quad \quad \quad \quad 0
\end{align*}
\]

3. \(df \uparrow \), \(t \)-distribution becomes more like \(N(0,1) \).
 If \(df > 120 \), we use \(N(0,1) \).

4. Table IV gives the area to the right of some \(t \) values for \(df = 1, 2, \ldots, 120 \).

5. For \(df \geq 121 \) (\(df > 120 \)), use \(z \)-line. The \(z \)-line gives the area to the right of some \(z \) values.
Example: \(n = 10 \) \(\text{df} = n-1 = 9 \)

\[
P(t > 0.261) = 0.4 \\
P(t > 1.833) = 0.1 \\
P(t < 1.833) = 0.9 \\
P(t < -1.833) = P(t > 1.833) = 0.05
\]

\[
P(t > 2) \text{ if } 1.83 < a < 2.262 \\
\Rightarrow 0.025 < P(t > 2) < 0.05
\]

10.9 Confidence interval estimation for \(\mu \).

\(\bar{X} \) is a point estimate of \(\mu \).

(1) \(\sigma \) is known (not practical)

\[
\bar{X} \pm z^* \left(\frac{\sigma}{\sqrt{n}} \right)
\]

where \(z^* \) is the appropriate percentile of the \(N(0, 1) \) distribution.

(1-\(\alpha \)) 100\% \(z^* \) \(P(z < z^*) = 1 - \frac{\alpha}{2} \).
2. If is unknown (most of the case)

\[X \pm t^* \left(\frac{S}{\sqrt{n}} \right) \]

Where \(t^* \) is the appropriate percentile of the \(t \)-distribution with \(n-1 \) df.

\[t(n-1) \]

\[P(t < t^*) = \left(\frac{\alpha}{2} \right) \]

Margin of error

1. If known. \(E = z^* \left(\frac{S}{\sqrt{n}} \right) \)

2. If unknown. \(E = t^* \left(\frac{S}{\sqrt{n}} \right) \).

Let's do it! 10.3 (to the right)

Hypothesis:

- \(H_0: \mu = 7.06 \) vs. \(H_1: \mu > 7.06 \)
- \(n = 15 \). \(\overline{X} = 8.43 \). \(S = 4.32 \)
- \(\mu_0 = 7.06 \).

t-test statistic.

\[t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = 1.23 \]
(a).

\[t(14) \]

0 \[\leq \] \(T \) \[\leq \] \(t(14) \)

\[\Rightarrow \]

\[0.1 < \text{p-value} < 0.2 \]

(b).

\text{p-value (Table IV)}

\[0.868 < t < 1.345 \]

\[\Rightarrow \]

\[0.1 < \text{p-value} < 0.2 \]

(c).

\[\alpha = 0.1 \]

\[\Rightarrow \]

\[\text{p-value} > \alpha \]

\[\Rightarrow \]

accept H0.

(d).

Our data doesn't show enough evidence for us to conclude that the study time is more than 7.66 hours.

(e).

Construct 90% confidence interval for \(\theta \).

\[\bar{x} = 8.43 \]

\[\frac{9}{\sqrt{n}} = \frac{4.32}{\sqrt{15}} = 1.12 \]
Table IV

\(t^* = 1.761 \)
\(\bar{x} \pm t^* \left(\frac{s}{\sqrt{n}} \right) \)

\(8.93 \pm 1.761 \times 0.12 \)

\(\Rightarrow (6.46, 10.4) \)
90%