null hypothesis: H_0
alternative hypothesis: H_1

Type I error
Type II error

α — level of significance
β — chance of making type II error

Bag A: -1000 $\$10$ H_0: Bag A
Bag B: 1000 $\$60$ H_1: Bag B

Type I error = reject H_0 when H_0 is true
Type II error = accept H_0 when H_1 is true

Direction of extreme

Decision Rule #1:
Reject H_0 if you select $\$60$ or more, otherwise accept H_0.
\[\alpha = \text{type I error} = \text{chance of selecting } \$60 \text{ or more from Bag A.} = \frac{1}{20} = 0.05 \]
\[\beta = \text{type II error less than} = \text{chance of selecting } \$60 \text{ from Bag B.} = \frac{10}{20} = 0.6 \]

Decision Rule #2:
Reject \(H_0 \) if \(\bar{X} \geq 55 \)
\[\alpha = \frac{1}{20} = 0.05 \]
\[\beta = \frac{6}{20} = 0.3 \]

Decision Rule #3:
Reject \(H_0 \) if \(\bar{X} \geq 40 \)
\[\alpha = \frac{4}{20} = 0.2 \]
\[\beta = \frac{4}{20} = 0.2 \]
Summary of the relationship between the decision rule and the significance level:

Decision Rule \rightarrow **Significance Level** α \rightarrow **Decision Rule**

Definition:
A rejection region is **one-sided** if its set of extreme values are all in one direction, either all to the right or all to the left.

A rejection region is **two-sided** if its set of extreme values are in two directions.

How unusual are our data?

P-value

Definition:
The p-value is the chance, computed under the assumption that H0 is true, of getting the observed value plus all of more extreme values.
1. $50 observed value
 \[P(\$50, \$60, \$(100)) \text{ from Bag A.} \]
 \[p\text{-value} = \frac{2}{20} = 0.1 \]

2. $40
 \[p\text{-value} = \frac{4}{20} = 0.2 \]

A small \(p\text{-value} \) → data showing stronger evidence against \(H_0 \).

\(p\text{-value} \): calculated from observed data.
\(\alpha \): given as a requirement.

1. classical approach (\(\alpha \rightarrow \) decision rule)
2. \(p\text{-value} \) approach.

If \(p\text{-value} \leq \alpha \) → the data are statistically significant at the given level \(\alpha \)
 → we reject \(H_0 \)

If \(p\text{-value} > \alpha \) → the data are not statistically significant at the given level \(\alpha \)
 → we accept \(H_0 \)
\[\alpha = 0.1 \quad \text{(requirement)} \]

1. $30 \quad \text{(observed data)}$

 - **Classical:** accept $H_0, \quad (\$30 < \$50)$
 - **p-value:** $p\text{-value} = \frac{6}{20} = 0.3 > \alpha$
 \[\Rightarrow \quad \text{accept } H_0 \]

2. $60 \quad \text{(observed data)}$

 - **Classical:** $60 > 50 \Rightarrow \text{reject } H_0$
 - **p-value:** $p\text{-value} = \frac{1}{20} = 0.05 < \alpha$
 \[\Rightarrow \quad \text{reject } H_0 \]

Let's do it again (P30)

a). Study C

b). H_0 is true \[\Rightarrow \text{Type I error} \]

c). H_0.