Chapter 8 Sampling Distributions: Measuring the accuracy of sample results

8.1 Sampling distribution of a statistic defined

Definition: The sampling distribution of a statistic is the distribution (probability) of the values of the statistic in all possible samples of the same size n taken from the same population.

Empirical sampling distribution:
- the sample proportion
- the sample mean
8.2 Sampling distribution of a Sample Proportion

Notation:

1. \(p \) denotes the population proportion of some event \(A \).
 \[p = P(A) \] — parameter

2. \(\hat{p} \) denotes the sample proportion of times \(A \) is observed.
 \(\hat{p} \) relative frequency of \(A \) in a sample.
 Let \(X \) denotes the number of times \(A \) occurs in a sample of size \(n \).
 \[\hat{p} = \frac{X}{n} \] — statistic

Sample 1: 9 women, 11 men.
\[\hat{p} = \frac{9}{20} \]
Sample 2: 10 women, 10 men
\[\hat{p} = \frac{10}{20}. \]

Example: Suppose a student guesses on a multiple choice test \(n = 2 \)
questions each with 4 choices.
What is the probability distribution of \(\hat{p} \), the observed proportion of questions correct?

- \(X \), number of questions correct

\(X \sim \text{Bin}(2, 0.25) \)

\[P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, 2 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(P(X = x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.56</td>
</tr>
<tr>
<td>1</td>
<td>0.38</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
</tr>
</tbody>
</table>

\[\hat{p} = \frac{X}{n} \]

<table>
<thead>
<tr>
<th>(\hat{p})</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do we expect of sample proportions?

1. The values of \(\hat{p} \) vary from one random sample to the next in a predictable way.

2. The shape of the distribution of \(\hat{p} \) is approximately symmetric and bell-shaped (large sample size).

3. The center of the distribution of \(\hat{p} \) is at the true proportion \(p \) (large sample).

4. With larger sample sizes, the values of \(\hat{p} \) vary less around the true proportion.
Example: $n = 10$ question.

$X \sim \text{Bin}(10, 0.25)$

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>0.056</td>
<td>0.19</td>
<td>0.28</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>$P(\geq)$</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

\[
\binom{10}{x} (0.25)^x (0.75)^{10-x}
\]
83. Bias and Variability

- Center
- How the values varied
- Overall shape

Definition:
A statistic is **unbiased** if the center of its sampling distribution is equal to the corresponding population parameter value.

The **variability** of a statistic corresponds to the spread of its sampling distribution. A statistic whose distribution shows values that are very spread out and dispersed is said to lack precision.
Goal: low bias, low variability. For reducing variability, we can have larger sample size.