Homework 3
Due Date: November 24th, 2008

1. Pg98, Ex2:
If \(f \) is continuous mapping of a metric space \(X \) into a metric space \(Y \), prove that
\[
\bar{f(E)} \subset f(\bar{E})
\]
for every set \(e \subset X \). (\(\bar{E} \) denotes the closure of \(E \).) Show, by an example, that \(f(\bar{E}) \) can be a proper subset of \(f(E) \).

2. Pg98, Ex3: Let \(f \) be a continuous real function on a metric space \(X \). Let \(Z(f) \) (the zero set of \(f \)) be the set of all \(p \in X \) at which \(f(p) = 0 \). Prove that \(Z(f) \) is closed.

3. Pg98, Ex7:
If \(E \subset X \) and if \(f \) is a function defined on \(X \), the restriction of \(f \) to \(E \) is the function \(g \) whose domain of definition is \(E \), such that \(g(p) = f(p) \) for \(p \in E \). Define \(f \) and \(g \) on \(\mathbb{R}^2 \) by: \(f(0, 0) = g(0, 0) = 0, f(x, y) = xy^2/(x^2 + y^4), g(x, y) = xy^2/(x^2 + y^2) \) if \((x, y) \neq (0, 0) \).
Prove that \(f \) is bounded on \(\mathbb{R}^2 \) that \(g \) is unbounded in every neighborhood of \((0, 0) \), and that \(f \) is not continuous at \((0, 0) \); nevertheless, the restrictions of both \(f \) and \(g \) to every straight line in \(\mathbb{R}^2 \) are continuous!

4. Pg98, Ex8:
Let \(f \) be a real uniformly continuous function on the bounded set \(E \) in \(\mathbb{R}^1 \). Prove that \(f \) is bounded on \(E \).
Show that the conclusion is false if boundedness of \(E \) is omitted from the hypothesis.

5. Pg98, Ex12:
A uniformly continuous function of a uniformly continuous function is uniformly continuous.
State this more precisely and prove it.

6. Pg98, Ex14:
Let \(I = [0, 1] \) be the closed unit interval. Suppose \(f \) is continuous mapping of \(I \) into \(I \).
Prove that \(f(x) = x \) for at least one \(x \in I \).

7. Pg98, Ex15:
Call a mapping of \(X \) into \(Y \) open if \(f(V) \) is an open set in \(Y \) whenever \(V \) is an open set in \(X \).
Prove that every continuous open mapping of \(\mathbb{R}^1 \) into \(\mathbb{R}^1 \) is monotonic.