
Tulin Kaman

Department of Applied Mathematics and Statistics

Stony Brook/BNL New York Center for Computational Science

tkaman@ams.sunysb.edu
Aug 23, 2012

Performance Tools

Do you have information on exactly

where the time is being spent

within your applications?

Techniques
How the measurement is obtained?

 Performance Tool Mechanisms
 Sampling (external, low overhead)
 Regularly interrupt the program and record where it is

 Instrumentation (internal, high overhead)
 Code modification, insert functions into program to record and

time events

 The measurements are made
 Profiling: summarizes performance data during execution.
 Tracing: What happens in my code at a given time?

Inclusive and Exclusive Profiles

Performance with respect to code regions

Exclusive measurements

Inclusive measurements includes child regions

Performance Steps

1. Assess overall performance

2. Identify functions where most of the time being spent

3. Instrument those functions

4. Measure code performance using hardware counters

5. Identify communication bottlenecks (if Parallel)

How to Detect Performance Problems?

 Performance: Count floating-point operation

 Each architecture has its own theoretical peak performance

 Parallel Performance: Scalability

 Strong Scalability: Total problem size is fixed while the
resources are increased.

 Weak Scalability: Keep the amount of work per core the
same. Increase the problem size while increasing the resources.

theoretical peak

performance

Clock

speed

IBM Blue Gene L 2.8 Gflop/s 700 MHz

IBM Blue Gene P 3.4 Gflop/s 850 MHz

Performance Tools
 Community Tools:

 GNU Profiler: tool provided with the GNU compiler

 Tuning and Analysis Utilities (TAU)

 PAPI (Performance Application Programming Interface)

 High Performance Computing Toolkit (HPCT) for IBM Blue
Gene

 Message Passing Interface (MPI) Profiler and Tracer tool

 Xprofiler for CPU profiling

 Hardware Performance Monitoring (HPM) library

 Modular I/O (MIO) library

GNU Profiler

 Profiling tool provided with the GNU compiler named

GNU profiler(gprof)

 Compile and link with -g -pg.

 Enabling profiling is as simple as adding -pg to the

compile flags

 Run the application

 See files called gmon.out created on the working

directory

Flat profile
 “Flat profile”, which you obtain with gprof command

gprof yourexe gmon.out.0 –p

 % time: the

percentage of the total

running time of the

program used by this

function.

cumulative seconds:

a running sum of the

number of seconds

accounted for by this

function and those listed

above it.

 self seconds:

the number of seconds

accounted for by this

function alone.

Call graph gprof yourexe gmon.out.0 -q

Annotated source listing
 prints out the source code to the application, with notes on

how many times each function is called.

gprof yourexe gmon.out.0 -A

Tuning and Analysis Utilities: TAU

TAU team:

Sameer Shende

Allen D. Malony, Wyatt Spear, Scott Biersdorff, Suzanne Millstein

University of Oregon

http://tau.uoregon.edu

Tuning and Analysis Utilities - TAU

 Performance evaluation tool

 Profiling and tracing toolkit for performance analysis of

parallel programs written in C, C++, Fortran, Java and

Python

 Support for multiple parallel programming paradigms:

 MPI, Multi-threading, Hybrid (MPI + Threads)

 Access to hardware counters using PAPI

TAU Configuration

 Each configuration labeled with the options used.

./configure -mpi -arch=bgl -pdt=<pdt-dir> -pdt=xlC

-PROFILE(default) /-PROFILECALLPATH/-MPITRACE/…

 Each configuration creates a unique Makefile.

 <tau-dir>/bgl/lib for BG/L platform

 <tau-dir>/bgp/lib for BG/P platform

 Add the bin directory to your path.

export PATH=/bgl/apps/TAUL/tau-2.18/bgl/bin:$PATH

export PATH=/bgl/apps/TAUL/tau-2.18/bgl/bin:$PATH

List of TAU’s Makefile on BG/L
Makefile.tau-bgltimers-multiplecounters-mpi-papi-compensate-pdt

Makefile.tau-bgltimers-multiplecounters-mpi-papi-pdt

Makefile.tau-callpath-mpi-compensate-pdt

Makefile.tau-callpath-mpi-pdt

Makefile.tau-depthlimit-mpi-pdt

Makefile.tau-mpi-compensate-pdt

Makefile.tau-mpi-papi-pdt

Makefile.tau-mpi-pdt
Makefile.tau-mpi-pdt-trace

Makefile.tau-multiplecounters-mpi-papi-pdt

Makefile.tau-multiplecounters-mpi-papi-pdt-trace

Makefile.tau-pdt

Makefile.tau-phase-multiplecounters-mpi-papi-compensate-pdt

Makefile.tau-phase-multiplecounters-mpi-papi-pdt

Program Database Toolkit

(PDT) provides access to the

high-level interface of source

code for analysis tools and

applications.

TAU Instrumentations

Three methods to track the performance of your application

1. Dynamic instrumentation

2. Compiler based instrumentation

3. Source instrumentation

Dynamic instrumentation through

library preloading

 Options: tracking MPI, io, memory, cuda, opencl library calls.

 Default: MPI instrumentation

 Others are enabled by command-line options to tau_exec

Example: IO instrumentation is requested.

$ tau_exec -io ./a.out
$ mpirun -np 4 tau_exec -io ./a.out

Compiler Based Instrumentation
 Set environment variables

 Use TAU_MAKEFILE

 Use TAU compiler scripts: tau_cxx.sh, tau_cc.sh, tau_f90.sh

 Set TAU options available to TAU compiler scripts

Example:
$ export PATH =[path to tau]/[arch]/bin:$PATH

$ export TAU_MAKEFILE=[path to tau]/[arch]/lib/[makefile]

$ tau_cc.sh –o hello hello.c

-optVerbose Enable verbose output (default: on)

-optKeepFiles Do not remove intermediate files

-optShared Use shared library of TAU (consider when using

tau_exec

Running the Application

 Run the application to generate the profile data files

 Profile data files are generated in the current directory.

(DEFAULT)

 The environment variables:

 PROFILEDIR to store the files in different directory.

 TAU_VERBOSE to see the steps the TAU measurement systems

takes when your application is running

 TAU_TRACK_MESSAGE to track MPI message statistics

On Blue Gene: In your batch job script file, set the environment variable

@ arguments = -np 16 -env PROFILEDIR=<profile-dir> -exe …

Reducing Performance Overhead with

TAU_THROTTLE

 Default rule TAU uses to determine which functions to throttle:

 TAU_THROTTLE_NUMCALLS 100000 (DEFAULT)

TAU_THROTTLE_PERCALL 10 (DEFAULT)

 Profiling of the function is disabled if the number of function call

is more than 100000 times and has an inclusive time per call of

less than 10 microseconds.

 export TAU_THROTTLE_NUMCALLS=2000000

 export TAU_THROTTLE_PERCALL=5

Profiling each event callpath

 Make sure you set the TAU_MAKEFILE
[path to tau]/[arch]/lib/ Makefile.tau-callpath-mpi-pdt

 Set the environment variable TAU_CALLPATH

 Each event callpath to the depth set by the environment variable

TAU_CALLPATH_DEPTH environment variable (default is two)

 Higher depth introduces more overhead

export TAU_CALLPATH=1 (enables callpath)

export TAU_CALLPATH_DEPTH=100 (defines depth)

Performance Counters

 Peformance counters can count hardware performance

events such as cache misses, floating point operations

 PAPI: Performance Data Standard and API package

provides a uniform interface to access these performance

counters.

 TAU uses PAPI

 Find out which PAPI events are supported in your system.

 Run papi_avail

Performance Counters on BG/L

microprocessor (PowerPC440)

Performance Counters on BG/P

microprocessor (PowerPC450)

To Generate Hardware Counter Profile
 Make sure you set the TAU_MAKEFILE for hardware counter profiling.

TAU_MAKEFILE=[path to tau]/[arch]/lib/ Makefile.tau-multiplecounters-mpi-papi-pdt

 Set the COUNTERx environment variables to specify the type of counter to profile in your
job script file

@ arguments = -np 1 -env PROFILEDIR=<profile-dir>

-env “COUNTER1=GET_TIME_OF_DAY COUNTER2= PAPI_L1_DCM \

COUNTER3=PAPI_L1_ICM COUNTER4=PAPI_L1_TCM” -exe …

 Following subdirectories will be created

<profile-dir>/MULTI__GET_TIME_OF_DAY

<profile-dir>/MULTI__PAPI_L1_DCM

<profile-dir>/MULTI__PAPI_L1_ICM

<profile-dir>/MULTI__PAPI_L1_TCM

Fast Blue Gene Timers

 Blue Gene systems have a special clock cycle counter that can

be used for low overhead timings

-BGLTIMERS

Use fast low-overhead timers on IBM BG/L

-BGPTIMERS

Use fast low-overhead timers on IBM BG/P

-LINUXTIMERS

Use low overhead TSC Counter for wallclock time.

-CPUTIME

Use usertime+system time instead of wallclock

time.

-PAPIWALLCLOCK

Use PAPI to access wallclock time.

Analyzing Parallel Application
 pprof (for text based display)

 sorts and displays profile data generated by TAU.

 Execute pprof in the directory where profile files are located.

 paraprof (for GUI display)

 TAU has Java based performance data viewer.

 Requires Java1.4 or above, add it to your path.

 Pack all the profile files into one file. Easy to copy one file to local
computer.

$ paraprof --pack filename.ppk
 To launch the GUI

$ paraprof filename.ppk

pprof (Text based display)

Paraprof (for GUI Display)
execute paraprof from the command line where the profiles files are

Show Thread Statistics Text Window

Function Data and Comparison

Windows

Performance Counters

Custom Profiling
Selective Instrumentation File

 Specify a list of routines to exclude or include (case sensitive)

 Optionally specify a list of files to exclude or include

BEGIN_INCLUDE_LIST

int main(int, char **)

F2()

END_INCLUDE_LIST

BEGIN_EXCLUDE_LIST

F1()

F2()

END_EXCLUDE_LIST

BEGIN_FILE_EXCLUDE_LIST

f1.c

f2.c

END_FILE_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

main.c

f2.c

END_FILE_INCLUDE_LIST

Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]

 [-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f<instr_req_file>]

What loops account for the most time? How much?

 Generating a loop level profile

export TAU_MAKEFILE=$TAULIBDIR/Makefile.tau-mpi-pdt

export TAU_OPTIONS=‘-optTauSelectFile=select.tau –optVerbose’

$ cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

Question 1: What routines account for

the most time?
 Create a Flat Profile

$ export PATH=/bgl/apps/TAUL/tau-2.18/bgl/bin:$PATH

$ export TAU_MAKEFILE= /bgl/apps/TAUL/tau-2.18/bgl/lib/Makefile.tau-mpi-pdt

$ make CC=tau_cc.sh CXX=tau_cxx.sh F90=’tau_f90.sh -qfixed’

(Or edit Makefile and change F90=tau_f90.sh)

 In your job script file,

@ arguments = -np 16 -env PROFILEDIR=<profile-dir> -exe …

$ llsubmit tau_app.run

$ cd <profile-dir>

$ paraprof --pack tau_app.ppk

$ paraprof tau_app.ppk

Answer1

Question 2: Who calls MPI_Barrier() function?

 Generate call path profiles
$ export PATH= /bgl/apps/TAUL/tau-2.18/bgl/bin:$PATH

$ export TAU_MAKEFILE=/bgl/apps/TAUL/tau-2.18/bgl/lib/Makefile.tau-callpath-mpi-pdt

$ make CC=tau_cc.sh CXX=tau_cxx.sh F90=’tau_f90.sh -qfixed’

(Or edit Makefile and change F90=tau_f90.sh)
 In your job script file,

@ arguments = -np 16 -env PROFILEDIR=<profile-dir> -exe …
$ export TAU_CALLPATH = 1

$ export TAU_CALLPATH_DEPTH = 100

$ llsubmit tau_app.run

$ cd <profile-dir>

$ paraprof --pack tau_app.ppk

$ paraprof tau_app.ppk

(Windows → Thread → Call Path Relations

 → Call Graph)

Answer2: paraprof → Windows →

Threads→ Call Path Relations

Applying Performance Tools to

 mature, production-quality multiphysics simulation package.

 supports a range of physics, including compressible and

incompressible flow, MHD, turbulence models, fluid-structure

interactions, phase transitions, and crystal growth.

 DoE Innovative and Novel Computational Impact on Theory and

Experiment INCITE, PI : James Glimm

 2011 Uncertainty Quantification for Turbulent Mixing

 ANL IBM BG/P 10M core hours

 2012 Stochastic (w*) Convergence for Turbulent Combustion

 ANL IBM BG/P 35M core hours

62% efficiency on 163,840 cores
Argonne National Laboratory ALCF Blue Gene P system

Scalability
We performed mesh refinement on grids of sizes of

24, 192, 1536 million cells, and run them using

1,024, 8,192, and 65,536 cores, respectively, so that

the amount of computation for the volume remains

constant per core.

The total problem size is fixed while the

resources are increased. Scaling starts at 8

racks, which is the smallest configuration

with sufficient memory.

Stony Brook Center for Computational Science

Tutorial video and presentations are

http://www.stonybrook.edu/sbccs/tutorials.shtml

Tuning and Analysis Utilities: TAU

http://www.cs.uoregon.edu/Research/tau/home.php

http://www.stonybrook.edu/sbccs/tutorials.shtml

