Practice Exam:

1. Find the volume of the shape generated by revolving \(f(x) = \sin^2 x \) from \(x = 0 \) to \(x = \pi \) around the x-axis.

2. Find the volume of the shape generated by revolving \(f(x) = \cos x \) from \(x = 0 \) to \(x = \frac{\pi}{2} \) around the y-axis.

3. Find \(y(t) \) such that \(\frac{dy}{dt} = \frac{\cos t}{\cos y} \).

4. Find the solution to \(\frac{dy}{dt} = \frac{t}{\arctan y} \) in a form \(F(t,y) = 0 \).

5. Find the solution to \(\frac{dy}{dt} = \frac{t}{y \sin y} \) in a form \(F(t,y) = 0 \).

6. Find the arclength of \(f(x) = x^3 \) from \(x = -1 \) to \(x = 1 \).

7. Find \(y(t) \) such that \(\frac{dy}{dt} = \frac{y^2 - 1}{t} \).

8. Find \(T(t) \) and \(k \) such that \(\frac{dT}{dt} = k(T - 10) \), where \(T(0) = 0 \) and \(T(60) = 4 \).