ABSTRACT
The pseudo-rigid-body model concept allows compliant mechanisms to be analyzed using well-known rigid-body kinematics. This paper presents a pseudo-rigid-body model for initially circular functionally binary pinned-pinned segments that undergo large, nonlinear deflections. The model approximates the functionally binary pinned-pinned segment as three rigid members joined by pin joints. Torsional springs placed at the joints model the segment’s stiffness. This model has been tested by fabricating several such segments from a variety of different materials. An example mechanism incorporating functionally binary pinned-pinned segments is also presented.

INTRODUCTION
The nonlinear deflections often associated with the motion of compliant mechanisms increase the complexity of compliant mechanism analysis and design. Though these deflections may be difficult to analyze, they are necessary because many of the advantages of compliant mechanisms result from the reduced part count made possible by obtaining motion from deflections rather than from traditional kinematic pairs (Shoup and McLaran, 1971; Ananthasuresh and Kota, 1995). Analysis methods must be developed that simplify the analysis of the large-deflection compliant members so that compliant mechanisms may be designed. The pseudo-rigid-body model concept has been developed in response to this need (Howell and Midha, 1994). The pseudo-rigid-body model is used to unify compliant mechanism theory with rigid-body mechanism theory. This is accomplished by replacing a compliant segment with two or more rigid segments joined by a pin joint, with the lengths of the equivalent rigid segments specified so that their motion closely models that of the compliant segments. A torsional spring at the pin joint models the compliant segment’s resistance to bending. This type of model has been applied to small-length flexural segments (Howell and Midha, 1994), initially straight fixed compliant segments with constant end loads (Howell and Midha, 1995), and initially curved segments with similar loads (Howell and Midha, 1996).

Other methods exist as alternatives to the pseudo-rigid-body model for the design of compliant mechanisms. For example, structural optimization, homogenization theory, topology optimization, and multi-criteria optimization methods have been proposed for compliant mechanism design (Ananthasuresh and Kota, 1994, Frecker et al., 1997, Sigmund, 1996).

A common compliant link that has yet to have a pseudo-rigid-body model is the functionally binary pinned-pinned segment (FBPP segment), shown schematically in Fig. 1 (Edwards, 1996). Because it is pinned at both ends, the segment cannot carry moments or vertical loads; it is limited to horizontal loading. Because of this required loading, the segment behaves much like a simple linear spring. However, its force-deflection characteristics are not linear, and they depend to a large extent on the parameters of the FBPP segment. This paper presents a model for finding the force and moment characteristics of segments whose undeflected shape is a circular arc, as shown in
Fig. 2. This segment is often used in compliant mechanisms because of its simple geometry. For example, the mechanism illustrated schematically in Fig. 3 uses a functionally binary pinned-pinned segment to allow motion. The model presented in this paper will allow this motion to be analyzed using rigid-body kinematics.

Before analyzing the segment shown in Fig. 2, the problem can be simplified by realizing that the segment is symmetric about a vertical line through its center. This symmetry can be used to divide the complete FBPP segment into two equivalent half-segments. One such half-segment is shown in Fig. 4. This segment will be analyzed, and the results will be generalized to the full segment. The following sections show how this may be done.

**ELLIPITIC INTEGRAL SOLUTION**

The large-scale force-deflection relationships for functionally binary pinned-pinned (FBPP) segments require some form of a nonlinear solution. The classical method for determining these values has been through the use of elliptic integrals, which provide a means for solving the nonlinear equations (Bisshopp and Drucker, 1945; Frisch-Fay, 1962). Elliptic integrals are any of a wide range of non-elementary integrals which are intractable and have no elementary solution (Byrd and Friedman, 1954). Integrals which can be manipulated to conform to an elliptic integral basic function can then be transformed into an elliptic integral solution. These solutions may be evaluated using methods such as Landen’s scale of increasing amplitudes, which uses Gauss’ Arithmetico-Geometrical Means (King, 1924).

Upon deflection, the FBPP segment assumes an unknown shape which varies based on initial curvature, material properties, and applied force. The curvature of the half-segment may be found using the Bernoulli-Euler equation:

\[
\frac{1}{R_0} + \frac{M(s)}{EI} = \frac{d\theta}{ds} = \frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}} \tag{1}
\]

where \(R_0\) is the initial curvature, \(M(s)\) is the internal moment at any distance \(s\) along the segment, \(\theta\) is the angle between the segment tangent and the horizontal, and \(x\) and \(y\) are the coordinates of the beam at a distance \(s\) along the segment. Elliptic
Integrals provide the means for solving this equation to achieve formulas specifying the horizontal, vertical, and angular positions of the unknown deflected shape. Upon application of a force, the segment shown in Fig. 4 deflects to a new position, as shown in Fig. 5. The x- and y-coordinates of the pin joint in the deflected position are defined as \( a \) and \( b \). At any point \((x,y)\) along the segment, the angle between the segment tangent and the x-axis is \( \theta \); at the pin joint, the tangent angle is \( \theta_0 \). Applying the Bernoulli-Euler equation gives

\[
\frac{d^2 \theta}{ds^2} = \frac{d}{d\theta} \left( \frac{d\theta}{ds} \right) \frac{d\theta}{ds} = \frac{d\kappa}{d\theta} \kappa = \frac{d}{d\theta} \left( \frac{\kappa^2}{2} \right) \tag{6}
\]

In addition, when moving an infinitesimal distance \( ds \) along the curve, the following relationships apply:

\[
\frac{dx}{ds} = \cos \theta \tag{7}
\]
\[
\frac{dy}{ds} = \sin \theta \tag{8}
\]

Substituting both Eqs. (6) and (8) into Eq. (5) results in

\[
\frac{d}{d\theta} \left( \frac{(\kappa)^2}{2} \right) = -\frac{F}{EI} \sin \theta \tag{9}
\]

Separating variables and integrating yields

\[
\frac{\kappa^2}{2} = \frac{F}{EI} \cos \theta + C \tag{10}
\]

The constant of integration, \( C \), can be found by using the boundary conditions at the pinned end of the segment. At the pinned end there is no internal moment, so Eq. (2) becomes

\[
\kappa(\theta = \theta_0) = \frac{1}{R_0} \tag{11}
\]

Solving first for \( C \), substituting \( C \) into Eq. (10), and rearranging yields

\[
\kappa = \sqrt{\frac{2F}{EI} (\cos \theta - \cos \theta_0) + \frac{1}{R_0^2}} \tag{12}
\]

Various transformations need to be performed on Eq. (12) to prepare it for the elliptic integral solution. First, three new variables are defined as

\[
\kappa_0 = \frac{L}{R_0} \tag{13}
\]
\[
\alpha^2 = \frac{FL^2}{EI} \tag{14}
\]
\[
\lambda = \frac{\kappa_0^2}{2\alpha^2} - \cos \theta_0 \tag{15}
\]
where $\kappa_0$ is the non-dimensionalized curvature at the free end of the segment, $\alpha^2$ is the non-dimensionalized load factor, and $\lambda$ is a parameter used to transform the equation to an elliptic integral form. By substituting Eqs. (13) to (15) and Eq. (4), Eq. (12) can be expressed as

$$\frac{d\theta}{ds} = \frac{\sqrt{2\alpha}}{L} \frac{1}{\sqrt{\lambda + \cos \theta}}$$

(16)

Separating variables and integrating gives

$$\alpha = \frac{1}{\sqrt{2}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\lambda + \cos \theta}}$$

(17)

Equation (17) has no elementary solution, but is in a form that can be solved with elliptic integrals as

for $\lambda > 1$

$$\alpha = t F(\beta, t)$$

(18)

for $|\lambda| < 1$

$$\alpha = F(\psi, r)$$

(19)

where

$$\beta = \frac{\theta_0}{2}$$

(20)

$$t = \frac{2}{\sqrt{\lambda + 1}}$$

(21)

$$\psi = \arcsin \left( \frac{1 - \cos \theta_0}{\sqrt{\lambda + 1}} \right)$$

(22)

$$r = \frac{\sqrt{\lambda + 1}}{2}$$

(23)

and $F(\beta, t)$ and $F(\psi, r)$ are incomplete elliptic integrals of the first kind.

Both Eqs. (18) and (19) have restrictions governing the valid ranges for their usage. These are

$$0 < \theta_0 \leq \pi \quad \text{for Eq. (18)}$$

(24)

$$0 < \theta_0 \leq \arccos(-\lambda) \quad \text{for Eq. (19)}$$

(25)

Knowing the value for $\alpha$, equations can now be developed for $a$ and $b$, the $x$- and $y$-coordinates of the pin joint in the deflected position. The equation for the horizontal displacement $a$ will be treated first. Using the relationship established in Eq. (7), an expansion of Eq. (4) results in

$$\kappa = \frac{d\theta}{ds} = \frac{d\theta}{dx} \frac{dx}{ds} = \frac{d\theta}{dx} \cos \theta$$

(26)

Equation (16) can now be expressed in terms of $x$ and $\theta$ as

$$\frac{d\theta}{dx} \cos \theta = \frac{\sqrt{2\alpha}}{L} \frac{1}{\sqrt{\lambda + \cos \theta}}$$

(27)

Separating variables and integrating along the length of the fixed-pinned beam gives the final form:

$$\frac{a}{L} = \frac{1}{\sqrt{2\alpha}} \int_0^{\theta_0} \frac{\cos \theta \, d\theta}{\sqrt{\lambda + \cos \theta}}$$

(28)

Once again, Eq. (28) is intractable and an elliptic integral solution must be used as follows:

for $\lambda > 1$

$$\frac{a}{L} = \frac{1}{\alpha} \left[ (t^2 - 2) F(\beta, t) + 2 E(\beta, t) \right]$$

(29)

for $|\lambda| < 1$

$$\frac{a}{L} = \frac{1}{\alpha} \left[ 2 E(\psi, r) - F(\psi, r) \right]$$

(30)

with $\beta, t, \psi,$ and $r$ as defined in Eqs. (20) to (23), and $E(\beta, t)$ and $E(\psi, r)$ being incomplete elliptic integrals of the second kind. The preceding relationships also have usage constraints. They are

$$\alpha \neq 0$$

(31)

$$1 \leq \lambda$$

(32)

$$0 < \theta_0 \leq \pi \quad \text{for Eq. (29)}$$

(33)

$$0 \leq \theta_0 \leq \arccos(-\lambda) \quad \text{for Eq. (30)}$$

(34)

The equations for non-dimensionalized $b$ follow a slightly different derivation. Expanding Eq. (4) in terms of $y$ instead of $x$, we have

$$\kappa = \frac{d\theta}{ds} = \frac{d\theta}{dy} \frac{dy}{ds} = \frac{d\theta}{dy} \sin \theta$$

(35)
This allows Eq. (16) to be rewritten and integrated in terms of $y$ and $\Theta$:

$$\frac{b}{L} = \frac{1}{\sqrt{2\alpha}} \int_{0}^{\theta_0} \sin \theta \, d\theta$$

The integral in Eq. (36) may be solved through trigonometric substitution. The final equation is

$$\frac{b}{L} = \frac{\sqrt{\lambda}}{\alpha} (\sqrt{\lambda + 1} - \sqrt{\lambda + \cos \theta_0})$$

The constraints on Eq. (37) are

$$\alpha \neq 0$$

$$\lambda > -\cos \theta_0$$

With equations developed for the force-deflection characteristics of the FBPP half-segment, it is helpful to graph the segment deflection to aid in creating a simplified model. Assuming material constraints are not exceeded in bending, Fig. 6 presents the deflection characteristics for the beam tip at various values of $\kappa_0$. As evidenced in Fig. 6, the deflection curves are nearly circular, although not about the origin. This information will be used in the next section to develop a simplified, pseudo-rigid-body model for FBPP segments.

### THE PSEUDO-RIGID-BODY MODEL

The elliptic integral solution for the deflection of the half-model shows a near-circular path for the end of the half-segment. Using this concept, a simplified model, called the pseudo-rigid-body model (PRBM), can be developed to facilitate the force-deflection calculations for functionally binary pinned-pinned (FBPP) segments. This model, shown in Fig. 7, uses two rigid links and a torsional spring to approximate the original nonlinear bending characteristics of the FBPP segment, with the link lengths and spring constant dependent on the initial curvature of the segment. The torsional spring models the segment’s bending stiffness, and is placed at the center of the circular deflection path shown in Fig. 6.

Note that, due to symmetry, the half-model is equally applicable to either side of the FBPP segment. Thus the entire FBPP segment shown in Fig. 2 may be represented in terms of an identical PRBM on each side of the segment midpoint. The resulting rigid-body model is given in Fig. 8. The PRBM on the left is coupled with the PRBM on the right side of the segment midpoint by requiring the two angles $\Theta_{\text{left}}$ and $\Theta_{\text{right}}$ to be equal in value, as well as the torsional spring constants $K_{\Theta_{\text{left}}}$ and $K_{\Theta_{\text{right}}}$. Likewise, the lengths of the corresponding rigid links...
Derivation of the PRBM Link Lengths

For the PRBM given in Fig. 7, it is apparent that the key factor governing accurate endpoint deflection approximations is obtaining the correct lengths for the two rigid links. The length of the fixed link is defined by the non-dimensionalized parameter \( \gamma \), the “fundamental radius factor,” as \( L(1-\gamma) \), where \( L \) is the length of the half-segment. However, since the beam is initially curved the second rigid link cannot have a length \( \gamma L \). If it did, the link would be too long to represent the actual endpoint of the curved beam. The length of the second link must be the radius of the circular motion path described in Fig. 6. A new parameter \( \rho \) is defined as the “characteristic radius factor,” with the distance \( \rho L \) being the characteristic radius (Howell and Midha, 1996). The second link then has a length \( \rho L \), where \( \rho \) is defined from simple geometry as

\[
\rho = \frac{(a_i/L) - (1-\gamma)^2 + (b_i/L)^2}{\kappa} \tag{40}
\]

where \( a_i \) and \( b_i \) are the initial horizontal and vertical positions of the segment endpoint.

Since the initial locations of both the half-segment and PRBM endpoints are the same, the non-dimensionalized initial horizontal position, \( \frac{a_i}{L} \), can be determined from known values as

\[
\frac{a_i}{L} = \frac{1}{\kappa_0} \sin \kappa_0 \tag{41}
\]

Similarly, the non-dimensionalized initial vertical endpoint position is

\[
\frac{b_i}{L} = \frac{1}{\kappa_0} (1 - \cos \kappa_0) \tag{42}
\]

Since the segment is initially curved, the angle the second link makes with the \( x \)-axis will be non-zero. This angle \( \Theta_i \), called the pseudo-rigid-body angle, has an initial value \( \Theta_i \) of

\[
\Theta_i = \tan^{-1} \left( \frac{b_i}{a_i - L(1-\gamma)} \right) \tag{43}
\]

Upon application of a force \( F \), the PRBM deflects to the position shown in Fig. 7. The new value of \( \Theta \) is given by

\[
\Theta = \tan^{-1} \left( \frac{b_p}{a_p - L(1-\gamma)} \right) \tag{44}
\]

with \( a_p \) and \( b_p \) being the new horizontal and vertical coordinates of the PRBM endpoint. If \( \Theta \) is known, the non-dimensionalized horizontal and vertical positions of the PRBM segment endpoint may be found from

\[
\frac{a_p}{L} = 1 - \gamma + \rho \cos \Theta \tag{45}
\]

and

\[
\frac{b_p}{L} = \rho \sin \Theta \tag{46}
\]

Given the two lengths for the rigid links, the PRBM endpoint path will stay within a specified error region (compared to the actual endpoint path) over a certain range of deflection. Thus the ideal PRBM is the one whose link lengths allow the largest range of deflection over which the error stays within the specified region. Because the fundamental radius factor, \( \gamma \), determines the characteristic radius factor \( \rho \), the deflection path depends only on \( \gamma \). The solution method followed for obtaining the value of \( \gamma \) will be similar to that followed by Howell and Midha (1996).

At any two corresponding points on the PRBM and elliptic integral deflection curves, the relative error between the two paths is \( \varepsilon \), where \( \varepsilon \) is defined to be

\[
\varepsilon = \frac{\gamma}{2} \left[ \left( \frac{a - a_p}{L} \right)^2 + \left( \frac{b - b_p}{L} \right)^2 \right] \tag{47}
\]

The error region is defined as a non-dimensionalized constant distance \( \varepsilon_{max} \) on either side of the PRBM deflection path. The error region is narrow near the undeflected initial position, and widens as the angle of deflection increases. Finally, a variable \( \Delta \Theta_{max} \) is defined as

\[
(\Delta \Theta)_{max} = \Theta_{max} - \Theta_i \tag{48}
\]

where \( \Theta_{max} \) is the value of the pseudo-rigid-body angle at which the PRBM approximation exceeds the error bound \( \varepsilon_{max} \). \( (\Delta \Theta)_{max} \) is then the difference between the initial angle of the rigid link and the final angle at which the error is exceeded.

The search for the optimal fundamental radius factor as a
function of $\kappa_0$ then resolves itself into the following one-dimensional problem:

Find the value of $\gamma$ which maximizes deflection angle $(\Delta \Theta)_{\text{max}}$, where

$$\varepsilon \leq \varepsilon_{\text{max}} \text{ for } \Theta_i \leq \Theta \leq \Theta_{\text{max}}$$  \(49\)

The optimization method implemented for finding $\gamma$ is the Golden Section method (Rao, 1984). For all cases, a parameter value of $\varepsilon_{\text{max}} = 0.5 \%$ was utilized in the error calculations. The optimized values for $\gamma$ over the range of $0.5 \leq \kappa_0 \leq 1.5$ are shown in Fig. 9. Table 1 shows the $\gamma$ and $\rho$ values at selected $\kappa_0$ values, with the corresponding $(\Delta \Theta)_{\text{max}}$ value for each curvature $\kappa_0$.

As seen in Fig. 9, the $\kappa_0$-$\gamma$ graph has two nearly linear regions along the curvature range. Hence two linear least-squares curve fits describing $\gamma$ in terms of $\kappa_0$ are

$$\gamma = 0.8063 - 0.0265 \kappa_0 \quad 0.500 \leq \kappa_0 \leq 0.595 \quad (50)$$

$$\gamma = 0.8005 - 0.0173 \kappa_0 \quad 0.595 \leq \kappa_0 \leq 1.500 \quad (51)$$

with a correlation coefficient $r^2 \geq 0.999$ in each case.

**DERIVATION OF THE PRBM SPRING CONSTANT**

The spring constant of the torsional spring needs to be ascertained to complete the modeling of the segment’s stiffness. Norton (1991) and Howell et al. (1996) proposed stiffness coefficients for initially straight fixed-pinned segments, while Howell and Midha (1996) extended the theory to initially curved fixed-pinned segments subjected to variable-angle end forces. However, the case of pure horizontal loading has not been addressed by these authors. Since FBPP segments experience pure horizontal loading, a new stiffness analysis is required.

To avoid dimensional characteristics, the equation for the spring constant will be developed in non-dimensionalized terms. The horizontal applied force $F$ may be expressed in non-dimensionalized form as $\alpha^2$, which is defined as

$$\alpha^2 = \frac{F L^2}{E I} \quad (52)$$

However, only part of the load $F$ acts to rotate the rigid link. The component which is tangential to the link, $F_t$, actually deflects the link, while the axial component $F_a$ has no effect on rotation. The tangential force is determined to be

$$F_t = F \sin \Theta \quad (53)$$

The non-dimensionalized tangential force $\alpha_t^2$ is given by

$$\alpha_t^2 = \frac{F L^2}{E I} \quad (54)$$

Substituting Eq. (53) into Eq. (54) results in

$$\alpha_t^2 = \frac{F L^2 \sin \Theta}{E I} \quad (55)$$

or

$$\alpha_t^2 = \alpha^2 \sin \Theta \quad (56)$$

The deflection of the rigid link, $\Delta \Theta$, can be defined as the difference between the current pseudo-rigid-body angle and the
initial angle, or

\[ \Delta \Theta = \Theta - \Theta_i \] (57)

It remains, then, to determine a model describing the stiffness of the torsional spring. For various non-dimensionalized curvatures \( \kappa_0 \), a graphical representation of the force-rotation deflection \( \Delta \Theta - \Delta \Theta \) relationship is found in Fig. 10. Over the first portion of the graph, the slope of each of the curves is nearly constant. Therefore, it may be modeled by a linear relationship as

\[ \alpha_t^2 = K_\Theta \Delta \Theta \] (58)

where \( K_\Theta \) is the spring stiffness coefficient.

The approximation was extended over the largest \( \Delta \Theta \) range possible while keeping the correlation coefficient \( r^2 \geq 0.999 \). The relationship between \( K_\Theta \) and \( \kappa_0 \) is illustrated in Fig. 11 over the range \( 0.5 \leq \kappa_0 \leq 1.5 \). Table 2 contains the values of \( K_\Theta \) for selected curvatures \( \kappa_0 \).

If a simple equation is desired for quick calculations, the following relationship has a correlation coefficient \( r^2 \geq 0.999 \) and can be used to approximate the torsional spring constant for curvatures of \( 0.5 \leq \kappa_0 \leq 1.5 \):

\[ K_\Theta = 2.568 - 0.028 \kappa_0 + 0.137 \kappa_0^2 \] (59)

The value of the torsional spring constant may be found using the equation

\[ M = K \Delta \Theta = F_i \rho L \] (60)

where \( M \) is the moment applied to the pin joint and \( K \) is the torsional spring constant. By combining Eq. (60) with Eqs. (54) and (58), the equation for \( K \) is found to be

\[ K = \rho K_\Theta \frac{EI}{L} \] (61)

When a larger \( \Delta \Theta \) range is required, a second-order curve fit will accurately model the force-rotation relationship over the entire range that the PRBM deflection path is accurate. Similar to Eq. (58), it will be of the form

\[ \alpha_t^2 = K_{\Theta 1} \Delta \Theta + K_{\Theta 2} (\Delta \Theta)^2 \] (62)
The values for $K_{\Theta_1}$ and $K_{\Theta_2}$ at various curvatures are shown in Table 3. The equation for the spring function $K(\Delta \Theta)$ may be found using the approach used above for the first-order curve fit. It is

$$K(\Delta \Theta) = \frac{EI}{L}(K_{\Theta_1} + K_{\Theta_2} \Delta \Theta)$$  \hspace{2cm} (63)$$

### VALIDATION OF THE PRBM

To verify the PRBM theory for FBPP segments, various physical segments were machined for use in testing. Test mechanisms were created from A36-mild steel, 6061-T651 aluminum, and polypropylene, with the flexural rigidities $(EI)$ being different in each case. To ensure that the resulting data was independent of the direction of deflection, two separate tests were performed on each segment. In the first, incremental forces were applied to the segment from an initially undeflected position, while the second test started with the segment in the deflected position and incrementally decreased the applied force.

The equations for the PRBM spring constant previously developed allowed for either a first or second order relationship between the change in pseudo-rigid-body angle $\Delta \Theta$ and the non-dimensionalized force parameter $\alpha_t^2$. Thus, for each mechanism two different predicted values are obtained, one from each of the PRBM approximations.

There are two important relationships which must be analyzed to validate the PRBM equations for FBPP segments: the deflection path and the force-deflection relationship. In each case, the results from the elliptic integral solution and the physical mechanism data are compared against the predicted values obtained from the PRBM. Appropriate transformations were made to convert the physical data into the half-model form required for comparison against the elliptic integral and PRBM solutions. Each mechanism was subjected to a series of tests, with the force-deflection data being averaged for each separate material type to obtain a truer relationship. The deflection path and force-deflection relationship for the aluminum segments are found in Figures 12 and 13. These two plots are representative of the results obtained for the aluminum, mild steel, and polypropylene segments (Edwards, 1996).

The plot of the deflection paths shows a close approximation of the PRBM equations to the actual physical segments, while more error is evident in the force-deflection curves. The error found in the force-deflection curves is attributed to various sources. Since it is important when analyzing elastic behavior to avoid undergoing high stresses which may cause plastic yielding, the segments were designed to have relatively small force requirements. However, this caused the force data to fall

<table>
<thead>
<tr>
<th>$\kappa_0$</th>
<th>$K_{\Theta_1}$</th>
<th>$K_{\Theta_2}$</th>
<th>$(\Delta \Theta)_{max}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>2.24</td>
<td>0.46</td>
<td>1.68</td>
</tr>
<tr>
<td>0.75</td>
<td>2.30</td>
<td>0.48</td>
<td>1.46</td>
</tr>
<tr>
<td>1.00</td>
<td>2.34</td>
<td>0.55</td>
<td>1.33</td>
</tr>
<tr>
<td>1.25</td>
<td>2.40</td>
<td>0.64</td>
<td>1.20</td>
</tr>
<tr>
<td>1.50</td>
<td>2.48</td>
<td>0.73</td>
<td>1.07</td>
</tr>
</tbody>
</table>
into the range of the least-count of the force transducer used in the measurements, introducing a large uncertainty region for the forces. Also, frictional forces occurring principally at the pin joints have an effect on the force readings, but do not influence the positional data. Finally, stresses and discontinuities introduced during the fabrication of the physical segments also produce unknown effects on the behavior of the test mechanisms. These elements have a greater impact on the force-deflection relationship than on the deflection path of the segments.

EXAMPLE

The bistable CD ejection actuator shown in Fig. 14 is an example of a compliant mechanism using FBPP segments. This mechanism has one unstable and two stable equilibrium positions as shown in Fig. 15. The actuator is composed of two flexible members joined at each end by living hinges (flexural pivots with very little stiffness). The flexible members are identical in length and flexural rigidity \((E_I)\), and the deflection paths are constrained to be the same about the vertical plane halfway between the two fixed ends. The actuator serves as a medium for the storage and retrieval of a multimedia disk, such as a compact disk. The width of the two flexible beams is 1.22 mm, and the thickness out of the plane is 3.23 mm.

Living hinges can be modeled as being equivalent to pin joints at the same locations. Hence the actuator may be represented by a mechanism with each of the flexural pivots being replaced by pin joints. The actuator now can be seen to be two FBPP segments fixed at the opposing ends, and joined at the common end by the same pin joint. The PRBM for the entire actuator is given in Fig. 16.

Since both the FBPP segments rotate as the actuator is deflected, a constant applied vertical force will have a varying axial effect on the deflection of the segments. Consider the two equilibrium positions for a single FBPP segment shown in Fig. 17. At the top position, the force \(F\) has the axial and tangential components \(F_a\) and \(F_t\) respectively. \(F_a\) is the only component which acts to deflect the segment, with \(F_t\) causing the rotation. In the second (unstable) state, the force \(F\) has no axial component, and thus a pure rotational force \(F_t\) occurs as the actuator deflects through this position. The variation of the axial component \(F_a\) during deflection may be approximated by using the equation \(F_a = F \cos \beta\), with the angle \(\beta\) as defined in Fig. 17.

The equilibrium positions of the flexible FBPP segments are shown in Fig. 18, where the stable equilibrium states have been rotated to facilitate the analysis. Since the two stable equilibrium positions have identical FBPP segment shapes, the force \(F_{max}\)
The predicted value for $F_{\text{max}}$ was determined using the PRBM approximation, based on the dimensional characteristics of the actuator. Each of the FBPP segments has an initial radius of curvature $R_0 = 55.6 \text{ mm}$, a segment length $L' = 63.0 \text{ mm}$, and a half-model length $L = 31.5 \text{ mm}$. Thus the non-dimensionalized curvature of each half-segment is $\kappa_0 = 0.57$. Using the methods described in the preceding sections, the PRBM parameter values for this curvature are calculated to be $\gamma = 0.7913$, $\rho = 0.7884$, $K_\Theta = 2.6233$, $K_{\Theta 1} = 2.2592$, and $K_{\Theta 2} = 0.4540$. These values were then input into the PRBM equations for the 1-coefficient and 2-coefficient torsional spring constants, which output the corresponding predicted values for the toggle force $F_{\text{max}}$.

The force and deflection values obtained for the actuator are shown in Table 4, along with the predicted force values based on the 1-coefficient and 2-coefficient torsional spring constant equations. Considering that the least count of the force transducer is $0.02 \text{ N}$, the force $F$ measured by the transducer is well within a reasonable range of accuracy for the 2-coefficient PRBM approximation. The 1-coefficient approximation is also observed to perform reasonably well.

**CONCLUSION**

Functionally binary pinned-pinned segments are a common part of many compliant mechanisms. Because of their non-linear deflection behavior, however, prediction of FBPP segment deflection has been difficult in the past. Therefore, FBPP segments have been analyzed in this paper to determine their force-deflection characteristics. Elliptic integral solutions were used to develop analytic expressions for FBPP segment motion. Using these solutions, a pseudo-rigid-body model was developed to allow easier modeling of FBPP segments. This model represents the FBPP half-segment as two rigid beams joined by a pin joint. A torsional spring at the pin joint models segment stiffness. The force-deflection characteristics of the segment are modeled by choosing appropriate link lengths as well as the torsional spring constant. The accuracy of the model was tested using test segments fabricated from aluminum, steel, and polypropylene. In each case, the model accurately predicted the segments’ force-deflection characteristics. An example mechanism using FBPP

| Table 4: Force and deflection values for actuator at $\Delta a = 2.64 \text{ mm}$, $\Delta b = 2.77 \text{ mm}$ |
| --- | --- | --- |
| $F_{\text{max}}$ | $\alpha^2_{\text{max}}$ |
| actuator | 0.534 N | 0.791 |
| PRBM - 1 Coefficient | 0.596 N | 0.884 |
| PRBM - 2 Coefficients | 0.529 N | 0.786 |
segments was also analyzed, and the model proved useful in predicting its motion.

ACKNOWLEDGMENTS

Thanks is given to Compliant Solutions, who allowed the use of the bistable CD ejection actuator. This material is based upon work supported under a National Science Foundation Graduate Fellowship and a National Science Foundation Career Award No. DMI-9624574.

REFERENCES


Frisch-Fay, R., 1962, Flexible Bars, Butterworth, Washington, D.C.


