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Abstract—Energy expenditure has become a significant fraction
of data center operating costs. Recently, “geographical load
balancing” has been proposed to reduce energy cost by exploiting
the electricity price differences across regions. However, this
reduction of cost can paradoxically increase total energy use.

We explore whether the geographical diversity of Internet-
scale systems can also provide environmental gains. Specifically,
we explore whether geographical load balancing can encourage
use of “green” renewable energy and reduce use of “brown”
fossil fuel energy. We make two contributions. First, we derive
three distributed algorithms for achieving optimal geographical
load balancing. Second, we show that if the price of electricity is
proportional to the instantaneous fraction of the total energy that
is brown, then geographical load balancing significantly reduces
brown energy use. However, the benefits depend strongly on
dynamic energy pricing and the form of pricing used.

Index Terms—data centers, geographical load balancing, re-
newable energy, distributed algorithms, demand response.

I. INTRODUCTION

Increasingly, web services are provided by massive, geo-
graphically diverse “Internet-scale” distributed systems, some
having several data centers each with hundreds of thousands
of servers. Such data centers require many megawatts of
electricity and so companies like Google and Microsoft pay
tens of millions of dollars annually for electricity [1].

The enormous, and growing, energy demands of data centers
have motivated research both in academia and industry on
reducing energy usage, for both economic and environmental
reasons. Engineering advances in cooling, virtualization, DC
power, etc. have led to significant improvements in the Power
Usage Effectiveness (PUE) of data centers; see [2]–[5]. Such
work focuses on reducing the energy use of data centers and
their components.

A different stream of research has focused on exploiting
the geographical diversity of Internet-scale systems to reduce
the energy cost. Specifically, a system with clusters at tens or
hundreds of locations around the world can dynamically route
requests/jobs to clusters based on proximity to the user, load,
and local electricity price. Thus, dynamic geographical load
balancing can balance the revenue lost due to increased delay
against the electricity costs at each location.

The potential of geographical load balancing to provide
significant cost savings for data centers is well known; see [1],
[6]–[10] and the references therein. The goal of the current
paper is different. Our goal is to explore the social impact
of geographical load balancing systems. In particular, because
GLB reduces the average price of electricity, it reduces the
incentive to make other energy-saving tradeoffs.

In contrast to this negative consequence, geographical load
balancing provides a huge opportunity for environmental ben-
efit as the penetration of green, renewable energy sources
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increases. Specifically, an enormous challenge facing the elec-
tric grid is that of incorporating intermittent, non-dispatchable
renewable sources such as wind and solar. Because generation
supplied to the grid must be balanced by demand (i) in-
stantaneously and (ii) locally (due to transmission losses and
the prohibitive cost of high-capacity long-distance electricity
transmission lines), renewable sources pose a significant chal-
lenge. A key technique for handling the non-dispatchability of
renewable sources is demand response, which entails the grid
adjusting the demand by changing the electricity price [11].
However, demand response entails a local customer curtailing
use. In contrast, the demand of Internet-scale systems is
flexible geographically; thus requests can be routed to different
regions to “follow the renewables” to do the work in the right
place, providing demand response without service interruption.
Since data centers represent a significant and rapidly growing
fraction of total electricity consumption, and the IT infrastruc-
ture with necessary knobs is already in place, geographical load
balancing can provide an inexpensive approach for enabling
large scale, global demand response.

The key to realizing the environmental benefits above is for
data centers to move from the typical fixed price contracts
that are now widely used toward some degree of dynamic
pricing, with lower prices when renewable energy generation
exceeds expectation. The current demand response markets
provide a natural way for this transition to occur, and there
is already evidence of some data centers participating in such
markets [12].

The contribution of this paper is twofold. (1) We develop
distributed algorithms for geographical load balancing with
provable optimality guarantees. (2) We use the proposed al-
gorithms to explore the feasibility and consequences of using
geographical load balancing for demand response in the grid.

Contribution (1): To derive distributed geographical load
balancing algorithms we use a simple but general model,
described in detail in Section II. In it, each data center
minimizes its cost, which is a linear combination of an energy
cost and the lost revenue due to the delay of requests (which
includes both network propagation delay and load-dependent
queueing delay within a data center). The geographical load
balancing algorithm must then dynamically decide both how
requests should be routed to data centers and how to allocate
capacity in each data center (e.g., speed scaling and how many
servers are kept in active/energy-saving states).

In Section III, we characterize the optimal geographical load
balancing solutions and show that they have practically appeal-
ing properties, such as sparse routing tables. In Section IV, we
use the previous characterization to design three distributed
algorithms which provably compute the optimal routing and
provisioning decisions and require different degrees of coordi-
nation. The key challenge here is how to design distributed
algorithms with guaranteed convergence without Lipschitz
continuity. Finally, we evaluate the distributed algorithms using
numeric simulation of a realistic, distributed, Internet-scale
system (Section V). The results show that a cost saving of
over 40% during light-traffic periods is possible.
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Contribution (2): In Section VI we evaluate the feasibility
and benefits of using geographical load balancing to facilitate
the integration of renewable sources into the grid. We do
this using a trace-driven numeric simulation of a realistic,
distributed Internet-scale system in combination with real wind
and solar energy generation traces over time.

When the data center incentive is aligned with the social
objective for reducing brown energy by dynamically pricing
electricity proportionally to the fraction of the total energy
coming from brown sources, we show that “follow the re-
newables” routing ensues (see Figure 5), providing significant
social benefit. We determine the wasted brown energy when
prices are static, or are dynamic but do not align data center
and social objectives enough, also later shown by [13].

II. MODEL AND NOTATION

We now introduce the workload and data center models,
followed by the geographical load balancing problem.

A. The workload model
We consider a discrete-time model with time step duration

normalized to 1, such that routing and capacity provisioning
decisions can be updated within a time slot. There is a (possibly
long) interval of interest t ∈ {1, . . . , T}. There are |J |
geographically concentrated sources of requests, i.e., “cities”,
and work consists of jobs that arrive at a mean arrival rate of
Lj(t) from source j at time t is. Jobs are assumed to be small,
so that provisioning can be based on the Lj(t). In practice,
T could be a month and a timeslot length could be 1 hour.
Our analytic results make no assumptions on Lj(t); however
numerical sections V and VI use measured traces to define
Lj(t).

B. The data center cost model
We model an Internet-scale system as a collection of |N |

geographically diverse data centers, where data center i is
modeled as a collection of Mi homogeneous servers. The
model focuses on two key control decisions of geographical
load balancing at each time t: (i) determining λij(t), the
amount of requests routed from source j to data center i;
and (ii) determining mi(t) ∈ {0, . . . ,Mi}, the number of
active servers at data center i. Since Internet data centers
typicall contain thousands of active servers, we neglect the
integrality constraint on mi. The system seeks to choose λij(t)
and mi(t) in order to minimize cost during [1, T ]. Depending
on the system design these decisions may be centralized or
decentralized. Section IV focuses on the algorithms for this.

Our model for data center costs focuses on the server costs
of the data center.1 We model costs by combining the energy
cost and the delay cost (in terms of lost revenue). Note that,
to simplify the model, we do not include the switching costs
associated with cycling servers in and out of power-saving
modes; however the approach of [14], [15] provides a natural
way to incorporate such costs if desired.

Energy cost. To capture the geographical diversity and vari-
ation over time of energy costs, we let gi(t,mi, λi) denote the
energy cost for data center i during timeslot t given mi active
servers and arrival rate λi including cooling power [16]–[18]. .
For every fixed t, we assume that gi(t,mi, λi) is continuously
differentiable in both mi and λi, strictly increasing in mi,

1Minimizing server energy consumption also reduces cooling and power
distribution costs.

non-decreasing in λi, and jointly convex in mi and λi. This
formulation is quite general. It can capture a wide range of
models for power consumption, e.g., energy costs as an affine
function of the load, see [19], or as a polynomial function of
the speed, see [20], [21]2.

Defining λi(t) =
∑
j∈J λij(t),∀t, the total energy cost of

data center i during timeslot t, denoted by Ei(t), is simply

Ei(t) = gi(t,mi(t), λi(t)). (1)

Delay cost. The delay cost captures the lost revenue incurred
from the delay experienced by the requests. To model this, we
define r(d) as the lost revenue associated with average delay
d. We assume that r(d) is strictly increasing and convex in d.

We consider the two components of delay: the network delay
while the request is outside the data center and the queueing
delay within the data center.

Let dij(t) denote the average network delay of requests from
source j to data center i in timeslot t. Let fi(mi, λi) rate of
λi. We assume that fi is strictly decreasing in mi, strictly
increasing in λi, and strictly convex in both mi and λi. Further,
for stability, we must have that λi = 0 or λi < miµi, where µi
is the service rate of a server at data center i. Thus, we define
fi(mi, λi) =∞ for λi ≥ miµi. For other mi, we assume fi is
finite, continuous and differentiable. Note that these assump-
tions are satisfied by most standard queueing formula, e.g.,
the average delay under M/GI/1 Processor Sharing (PS) queue
and the 95th percentile of delay under the M/M/1. Further, the
convexity of fi in mi models the law of diminishing returns
for parallelism.

Combining the above gives the following model for the total
delay cost Di(t) at data center i during timeslot t:

Di(t) =
∑

j∈J
λij(t)r

(
fi(mi(t), λi(t)) + dij(t)

)
. (2)

C. The geographical load balancing problem
Given the cost models above, the goal of geographical load

balancing is to choose the routing policy λij(t) and the number
of active servers in each data center mi(t) at each time t in
order minimize the total cost during [1, T ]. Because this model
neglects the cost of turning servers on and off, the optimization
decouples into independent sub-problems for each timeslot t.
For the analysis we consider only a single interval.3 Thus the
minimization of the aggregate of Ei(t) +Di(i) is achieved by
solving, at each timeslot,

min
m,λ

∑
i∈N

gi(mi, λi) +
∑
i∈N

∑
j∈J

λijr(dij + fi(mi, λi)) (3a)

s.t.
∑

i∈N
λij = Lj , ∀j ∈ J (3b)

λij ≥ 0, ∀i ∈ N, ∀j ∈ J (3c)
0 ≤ mi ≤Mi, ∀i ∈ N. (3d)

where m = (mi)i∈N and λ = (λij)i∈N,j∈J . We refer to this
formulation as GLB. Note that GLB is jointly convex in λij
and mi and can be efficiently solved centrally [23]. However, a
distributed solution algorithm is usually required by large-scale
systems, such as those derived in Section IV.

In contrast to prior work on geographical load balancing,
this paper jointly optimizes total energy cost and end-to-end

2We focus on the issue of peak pricing in our recent work [22]. It requires
slightly different approaches, but they can be merged.

3Time-dependence of Lj and prices is re-introduced for, and central to, the
numeric results in Sections V and VI.
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user delay, with consideration of both price and network delay
diversity. To our knowledge, this is the first work to do so.

GLB provides a general framework for studying geograph-
ical load balancing. However, the model still ignores many
aspects of data center design, e.g., reliability and availability,
which are central to data center service level agreements. Such
issues are beyond the scope of this paper; however our designs
merge nicely with proposals such as [24] for these goals.

The GLB model is too broad for some of our analytic results
and thus we often use two restricted versions.

Linear lost revenue. There is evidence that lost revenue is
linear within the range of interest for sites such as Google,
Bing, and Shopzilla [25], [26]. To model this, we can let
r(d) = βd, for constant β. GLB then simplifies to

min
m,λ

∑
i∈N

gi(mi, λi)+ β

∑
i∈N

λifi(mi, λi) +
∑
i∈N

∑
j∈J

dijλij


(4)

subject to (3b)–(3d). We call this optimization GLB-LIN.
Queueing-based delay. We occasionally specify the form

of f and g using queueing models. This provides increased
intuitions about the distributed algorithms presented.

If the workload is perfectly parallelizable, and arrivals are
Poisson, then fi(mi, λi) is the average delay of mi parallel
queues, with arrival rate λi/mi. Moreover, if each queue is
an M/GI/1 PS queue, fi(mi, λi) = 1/(µi − λi/mi). We also
assume gi(mi, λi) = pimi, which implies that the increase in
energy cost per timeslot for being in an active state, rather than
a low-power state, is mi regardless of λi. Note that cooling
efficiency of data center i can be integrated in pi, which allows
incorporation of cooling power consumption.

Under these restrictions, the GLB formulation becomes:

min
m,λ

∑
i∈N

pimi + β
∑
j∈J

∑
i∈N

λij

(
1

µi − λi/mi
+ dij

)
(5a)

subject to (3b)–(3d) and the additional constraint

λi ≤ miµi ∀i ∈ N. (5b)

We refer to this optimization as GLB-Q.
Additional Notation. Throughout the paper we use |S| to

denote the cardinality of a set S and bold symbols to denote
vectors or tuples. In particular, λj = (λij)i∈N denotes the
tuple of λij from source j, and λ−j = (λik)i∈N,k∈J\{j}
denotes the tuples of the remaining λik, which forms a matrix.

We also need the following in discussing the algorithms.
Define Fi(mi, λi) = gi(mi, λi) + βλifi(mi, λi), and define
F (m,λ) =

∑
i∈N Fi(mi, λi) + Σijλijdij . Further, let m̂i(λi)

be the unconstrained optimal mi at data center i given fixed
λi, i.e., the unique solution to ∂Fi(mi, λi)/∂mi = 0.

D. Practical considerations
Our model assumes there exist mechanisms for dynamically

(i) provisioning capacity of data centers, and (ii) adapting
the routing of requests from sources to data centers. With
respect to (i), many dynamic server provisioning techniques are
being explored by both academics and industry, e.g., [27]–[30].
With respect to (ii), there are also a variety of protocol-level
mechanisms employed for data center selection today. They
include, (a) dynamically generated DNS responses, (b) HTTP
redirection, and (c) using persistent HTTP proxies to tunnel
requests. Each of these has been evaluated thoroughly, e.g.,
[10], [31]–[33], and though DNS has drawbacks it remains

the preferred mechanism for many industry leaders such as
Akamai, possibly due to the added latency due to HTTP
redirection and tunneling [34]. Within the GLB model, we
have implicitly assumed that there exists a proxy/DNS server
co-located with each source. The practicality is also shown by
[35]. Our model also assumes that the network delays, dij can
be estimated, which has been studied extensively, including
work on reducing the overhead of such measurements, e.g.,
[36], and mapping and synthetic coordinate approaches, e.g.,
[37], [38]. We discuss the sensitivity of our algorithms to error
in these estimates in Section V.

III. CHARACTERIZING THE OPTIMA

We now provide characterizations of the optimal solutions
to GLB, which are important for proving convergence of the
distributed algorithms in Section IV. They are also necessary
because, a priori, one might worry that the optimal solution
requires a very complex routing structure, which would be
impractical; or that the set of optimal solutions is very frag-
mented, which would slow convergence in practice. The results
here show that such worries are unwarranted.

Uniqueness of optimal solution
To begin, note that GLB has at least one optimal solution.

This can be seen by applying Weierstrass’ theorem [39],
since the objective function is continuous and the feasible
set is compact subset of Rn. Although the optimal solution
is generally not unique, there are natural aggregate quantities
unique over the set of optimal solutions, which is a convex set.
These are the focus of this section.

A first result is that for the GLB-LIN formulation, under
weak conditions on fi and gi, we have that λi is common
across all optimal solutions. Thus, the input to the data center
provisioning optimization is unique.

Theorem 1. Consider the GLB-LIN formulation. Suppose that
for all i, Fi(mi, λi) is jointly convex in λi and mi, and
continuously differentiable in λi. Further, suppose that m̂i(λi)
is strictly convex. Then, for each i, λi is common for all optimal
solutions.

The proof is in the Appendix. Note that theorem 1 implies
that the server arrival rates at each data center, i.e., λi/mi, are
common among all optimal solutions.

Though the conditions on Fi and m̂i are weak, they do not
hold for GLB-Q. In that case, m̂i(λi) is linear, and thus not
strictly convex. Although the λi are not common across all
optimal solutions in this setting, the server arrival rates remain
common across all optimal solutions.

Theorem 2. For each data center i, the server arrival rates,
λi/mi, are common across all optimal solutions to GLB-Q.

Sparsity of routing
It would be impractical if the optimal solutions to GLB

required that requests from each source were divided up among
(nearly) all of the data centers. In general, each λij could be
non-zero, yielding |N | × |J | flows of requests from sources
to data centers, which would lead to significant scaling issues.
Luckily, there is guaranteed to exist an optimal solution with
extremely sparse routing. Specifically, we have

Theorem 3. There exists an optimal solution to GLB with at
most (|N |+ |J | − 1) of the λij strictly positive.
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Though Theorem 3 does not guarantee that every optimal
solution is sparse, the proof is constructive. Thus, it provides an
approach which allows one to transform any optimal solution
into a sparse optimal one.

The following result further highlights the sparsity of the
routing: any source will route to at most one data center that
is not fully active, i.e., where there exists at least one server
in power-saving mode.

Theorem 4. Consider GLB-Q where power costs pi are drawn
from an arbitrary continuous distribution. If any source j ∈ J
has its requests split between multiple data centers N ′ ⊆ N
in an optimal solution, then, with probability 1, at most one
data center i ∈ N ′ has mi < Mi.

IV. ALGORITHMS

We now present three distributed algorithms and prove
their convergence. For simplicity we focus on GLB-Q; the
approaches are applicable more generally, but become much
more complex for richer models.

Since GLB-Q is convex, it can be efficiently solved centrally
if all necessary information can be collected at a single point,
as may be possible if all the proxies and data centers were
owned by the same system with real-time synchronization.
However there is a strong case for Internet-scale systems
to outsource route selection [10]. To meet this need, the
algorithms presented below are decentralized and allow each
data center and proxy to optimize based on partial information.

These algorithms seek to fill a notable gap in the grow-
ing literature on algorithms for geographical load balancing.
Specifically, they have provable optimality guarantees for a
performance objective that includes both energy and delay,
where route decisions are made using energy price and network
propagation delay information. The most closely related work
[8] investigates the total electricity cost for data centers in a
multi-electricity-market environment. It contains the queueing
delay inside the data center (assumed to be a centralized
M/M/1 queue) but neglects the end-to-end user delay. Con-
versely, [10] uses a simple, efficient algorithm to coordinate
the “replica-selection” decisions for load balancing. Other
related works, e.g., [1], [7], [8], either do not provide provable
guarantees or ignore diverse network delays and/or prices.

Algorithm 1: Gauss-Seidel iteration
Algorithm 1 is motivated by the observation that GLB-

Q is separable in mi, and, less obviously, also separable in
λj := (λij , i ∈ N). This allows all data centers as a group
and each proxy j to iteratively solve for optimal m and λj
in a distributed manner, and communicate their intermediate
results. Though distributed, Algorithm 1 requires each proxy
to solve an optimization problem.

To highlight the separation between data centers and proxies,
we reformulate GLB-Q as:

min
λj∈Λj

min
mi∈Mi

∑
i∈N

(
pimi +

βλi
µi − λi/mi

)
+ β

∑
i∈N

∑
j∈J

λijdij

(6)

Mi := [0,Mi],Λj := {λj |λj ≥ 0,
∑
i∈N

λij = Lj , λi ≤ miµi}

(7)

Since the objective and constraints Mi and Λj are separable,
this can be solved separately by data centers i and proxies j.

The iterations of the algorithm are indexed by τ , and are
assumed to be fast relative to the timeslots t. Each iteration

τ is divided into |J | + 1 phases. In phase 0, all data centers
i concurrently calculate mi(τ + 1) based on their own arrival
rates λi(τ), by minimizing (6) over their own variables mi:

min
mi∈Mi

(
pimi +

βλi(τ)

µi − λi(τ)/mi

)
, ∀i ∈ N. (8)

In phase j of iteration τ , proxy j minimizes (6) over its own
variable by setting λj(τ + 1) as the best response to m(τ + 1)
and the most recent values of λ−j := (λk, k 6= j). This works
because proxy j depends on λ−j only through their aggregate
arrival rates at the data centers:

λi(τ, j) :=
∑
l<j

λil(τ + 1) +
∑
l>j

λil(τ), ∀j ∈ J. (9)

To compute λi(τ, j), proxy j need not obtain individual λil(τ)
or λil(τ + 1) from other proxies l. Instead, every data center i
measures its local arrival rate λi(τ, j) + λij(τ) in every phase
j of the iteration τ and sends this to proxy j at the beginning
of phase j. Then proxy j obtains λi(τ, j) by subtracting its
own λij(τ) from the value received from data center i. This
has less overhead than direct messaging.

In summary, Algorithm 1 works as follows (note that the
minimization (8) has a closed form). Here, [x]a := min{x, a}.
Algorithm 1. Starting from a feasible initial allocation λ(0)
and the associated m(λ(0)), let

mi(τ + 1) :=

[(
1 +

1√
pi/β

)
· λi(τ)

µi

]Mi

, ∀i ∈ N, (10)

λj(τ + 1) := arg min
λj∈Λj

∑
i∈N

λi(τ, j) + λij
µi − (λi(τ, j) + λij)/mi(τ + 1)

+
∑

i∈N
λijdij . (11)

Since GLB-Q generally has multiple optimal λ∗j , Algorithm
1 is not guaranteed to converge to one particular optimal
solution, i.e., for each proxy j, the allocation λij(τ) of job
j to data centers i may oscillate among multiple optimal
allocations. However, both the optimal cost and the optimal
per-server arrival rates to data centers will converge.

Theorem 5. Let (m(τ),λ(τ)) be a sequence generated by
Algorithm 1 when applied to GLB-Q. Then

(i) Every limit point of (m(τ),λ(τ)) is optimal.
(ii) F (m(τ),λ(τ)) converges to the optimal value.

(iii) The per-server arrival rates (λi(τ)/mi(τ), i ∈ N) to
data centers converge to their unique optimal values.

The proof of Theorem 5 follows from the fact that Algo-
rithm 1 is a modified Gauss-Seidel iteration. This is also the
reason for the requirement that the proxies update sequentially.
The details of the proof are in Appendix C.

Algorithm 1 assumes that there is a common clock to
synchronize all actions. In practice, updates will likely be asyn-
chronous, with data centers and proxies updating with different
frequencies using possibly outdated information. The algorithm
generalizes easily to this setting, though the convergence proof
is more difficult. The convergence rate of Algorithm 1 in a
realistic scenario is illustrated numerically in Section V.

Algorithm 2: Distributed gradient projection
Algorithm 2 reduces the computational load on the proxies.

In each iteration, instead of each proxy solving a constrained
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minimization (11) as in Algorithm 1, Algorithm 2 takes a single
step in a descent direction. Also, while the proxies compute
their λj(τ +1) sequentially in |J | phases in Algorithm 1, they
perform their updates all at once in Algorithm 2.

To achieve this, rewrite GLB-Q as

min
λj∈Λj

∑
j∈J

Fj(λ) (12)

where F (λ) is the result of minimization of (6) over mi ∈Mi

given λi. As explained in the definition of Algorithm 1, this
minimization is easy: if we denote the solution to (10) by

mi(λi) :=

[(
1 +

1√
pi/β

)
· λi
µi

]Mi

(13)

then

F (λ) :=
∑
i∈N

(
pimi(λi) +

βλi
µi − λi/mi(λi)

)
+ β

∑
i,j

λijdij .

We now sketch the two key ideas behind Algorithm 2.
The first is the standard gradient projection idea: move in the
steepest descent direction

−∇Fj(λ) := −
(
∂F (λ)

∂λ1j
, · · · , ∂F (λ)

∂λ|N |j

)
and then project the new point into the feasible set

∏
j Λj

with Λj given by (7). The standard gradient projection algo-
rithm will converge if ∇F (λ) is Lipschitz over

∏
j Λj . This

condition, however, does not hold for our F because of the
term βλi/(µi − λi/mi). The second idea is to construct a
compact and convex subset Λ of the feasible set

∏
j Λj with

the following properties: (i) if the algorithm starts in Λ, it
stays in Λ; (ii) Λ contains all optimal allocations; (iii) ∇F (λ)
is Lipschitz over Λ. The algorithm then projects into Λ in each
iteration instead of

∏
j Λj . This guarantees convergence.

Specifically, fix a feasible initial allocation λ(0) ∈
∏
j Λj

and let φ := F (λ(0)) be the initial objective value. Define

Λ := Λ(φ) :=
∏
j

Λj ∩
{
λ

∣∣∣∣λi ≤ φMiµi
φ+ βMi

, ∀i
}
. (14)

Even though the Λ defined in (14) indeed has the desired
properties (see Appendix D), the projection into Λ requires
coordination of all proxies and is thus impractical. In order for
each proxy j to perform its update in a decentralized manner,
we define proxy j’s own constraint subset:

Λ̂j(τ) := Λj ∩
{
λj

∣∣∣∣λi(τ,−j) + λij ≤
φMiµi
φ+ βMi

,∀i
}

where λi(τ,−j) :=
∑
l 6=j λil(τ) is the arrival rate to data

center i, excluding arrivals from proxy j. Even though Λ̂j(τ)
involves λi(τ,−j) for all i, proxy j can easily calculate these
quantities from data center i’s measured arrival rates λi(τ),
as done in Algorithm 1 in (9) and the discussion thereafter,
and does not need to communicate with other proxies. Hence,
given λi(τ,−j) from data centers i, each proxy can project
into Λ̂j(τ) to compute the next iterate λj(τ + 1) without the
need to coordinate with other proxies.4 Moreover, if λ(0) ∈ Λ
then λ(τ) ∈ Λ for all iterations τ .

4The projection to the nearest point in Λ̂j(τ) is defined by [λ]Λ̂j(τ) :=

arg miny∈Λ̂j(τ) ‖y − λ‖2.

Algorithm 2. Starting from a feasible initial allocation λ(0)
and the associated m(λ(0)), each proxy j computes, in each
iteration τ :

zj(τ + 1) := [λj(τ)− γj (∇Fj(λ(τ)))]Λ̂j(τ) , ∀j ∈ J, (15)

λj(τ + 1) :=
|J | − 1

|J | λj(τ) +
1

|J |zj(τ + 1), ∀j ∈ J. (16)

where γj > 0 is a stepsize.

All data centers i must compute mi(λi(τ)) according to
(13) in each iteration τ . Each data center i measures the local
arrival rate λi(τ), calculates mi(λi(τ)), and broadcasts these
values to all proxies at the beginning of iteration τ + 1 for the
proxies to compute their λj(τ + 1).

Algorithm 2 has the same convergence property as Algo-
rithm 1, provided the stepsize is small enough.

Theorem 6. Let (m(τ),λ(τ)) be a sequence generated by
Algorithm 2 when applied to GLB-Q. If, for all j, 0 < γj <
mini∈N β

2µ2
iM

4
i /(|J |(φ+ βMi)

3), then
(i) Every limit point of (m(τ),λ(τ)) is optimal.

(ii) F (m(τ),λ(τ)) converges to the optimal value.
(iii) The per-server arrival rates (λi(τ)/mi(τ), i ∈ N) to

data centers converge to their unique optimal values.

Theorem 6 is proved in Appendix D. The key novelty of the
proof is (i) handling the fact that the objective is not Lipshitz
and (ii) allowing distributed computation of the projection. The
bound on γj in Theorem 6 is more conservative than necessary
for large systems. Hence, a larger stepsize can be choosen to
accelerate convergence. The convergence rate is illustrated in
a realistic setting in Section V.

Algorithm 3: Distributed Gradient Descent
Like Algorithm 2, Algorithm 3 is a gradient-based algo-

rithm. The key distinction is that Algorithm 3 avoids the need
for projection in each iteration, based on two ideas. First, in-
stead of moving in the steepest descent direction, each proxy j
re-distributes its jobs among the datacenters so that

∑
i λij(τ)

always equals to Lj in each iteration τ . Second, instead of a
constant stepsize, Algorithm 3 carefully adjusts a time-varying
stepsize in each iteration to ensure that the new allocation is
feasible without the need for projection. The design of the
stepsize must be such that each proxy j can set its own γj(τ)
in iteration τ using only local information. Moreover, γj(τ)
must ensure: (i) collectively λ(τ + 1) must stay in the set
Λ′ over which ∇F is Lipschitz; (ii) λ(τ + 1) ≥ 0; and (iii)
F (λ(τ)) decreases sufficiently in each iteration. Define

Λ′ := Λ′(φ) = ΠjΛj ∩
{
λ|λi ≤

φ+ βMi/2

φ+ βMi
Miµi,∀i

}
Specifically, let ∇ij denote ∂/∂λij , choose a small ε ∈(
0,mini

( √
pi/β(

1+
√
pi/β

)
|J|
Miµi

))
, and let

Ωj(τ, x) := {i|λij(τ) > ε or ∇ijF (λ(τ)) < x, i ∈ N}

be the set of data centers that either are allocated significant
amount of data, i.e., larger than ε, from j in round τ or will
receive an increased allocation from j in round τ + 1, i.e.,
those with a gradient less than x. Then let

θj(τ) = min

x :
∑

i∈Ωj(τ,x)

∇ijF (λ(τ)) = x|Ωj(τ, x)|

 (17)



IEEE/ACM TRANSACTION ON NETWORKING 6

and Ωj(τ) := Ωj(τ, θj(τ)). Note that i 6∈ Ωj(τ) implies
λij(τ) = λij(τ + 1) ≤ ε.

Let Γ↓j (τ) := {i|λij(τ) > ε and ∇ijF (λ(τ)) > θj(τ)} be
the set of data centers which will receive reduced load from j,
and Γ↑j (τ) := {i|∇ijF (λ(τ)) < θj(τ)} be the set which will
receive increased load. Then, let

γ↓j (τ) = min
i∈Γ↓j (τ)

{
λij(τ)

∇ijF (λ(τ))− θj(τ)

}
be the maximum step size for which no data center will be
reduced to an allocation below 0 and

γ↑j (τ) =
1

|J |
min

i∈Γ↑j (τ)

{
φ+βMi/2
φ+βMi

Miµi − λi(τ)

θj(τ)−∇ijF (λ(τ))

}
be a lower bound on the maximum step size for which no data
center will have its load increased beyond that permitted by
Λ′j(τ). Algorithm 3 proceeds as follows.

Algorithm 3. Let K ′ = maxi
16|J|(φ+βMi)

3

β2M4
i µ

2
i

. Select % ∈ (0, 2).
Starting from a feasible initial allocation λ(0), each proxy j
computes, in each iteration τ :

γj(τ) := min
{
γ↓j (τ), γ↑j (τ), %/K ′

}
, (18)

λij(τ + 1) :={
λij(τ)− γj(τ) (∇ijF (λ(τ))− θj(τ)) if i ∈ Ωj(τ)

λij(τ) ≤ ε otherwise
(19)

As in the case of Algorithm 2, implicit in the description
is the requirement that all data centers i compute mi(λi(τ))
according to (13) in each iteration τ . The procedure for this is
the same as discussed for Algorithm 2.

Theorem 7. When using Algorithm 3 in the GLB-
Q formulation, F (λ(τ)) converges to a value
no greater than optimal value plus Bε, where

B = β|J |
∑
i

((
1 +

√
pi/β

)2

/µi + 2 maxj dij

)
.

Also, as with Algorithm 2, the key novelty of the proof of
Theorem 7 is the fact that we can prove convergence even
though the objective function is not Lipschitz. The proof of
Theorem 7 is provided in Appendix E. Finally, note that the
convergence rate of Algorithm 3 is even faster than that of
Algorithm 2 in realistic settings, as we illustrate in Section V.
We can consider ε as the tolerant of error when the optimal
allocation λij = 0. In practice, we can set ε to a small value,
then Algorithm 3 will almost converge to the optimal value.

V. CASE STUDY

The remainder of the paper evaluates the algorithms pre-
sented in the previous section under a realistic workload.
This section considers the data center perspective (i.e., cost
minimization) and Section VI considers the social perspective
(i.e., brown energy usage).

A. Experimental setup
We aim to use realistic parameters in the experimental setup

and provide conservative estimates of the cost savings resulting
from optimal geographical load balancing. The setup models an
Internet-scale system such as Google within the United States.
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Fig. 1. Hotmail trace used in numerical results.
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Fig. 2. Convergence of all three algorithms.

1) Workload description: To build our workload, we start
with a trace of traffic from Hotmail, a large Internet service
running on tens of thousands of servers. The trace represents
the I/O activity from 8 servers over a 48-hour period, starting
at midnight (PDT) on August 4, 2008, averaged over 10 minute
intervals. The trace has strong diurnal behavior and has a
fairly small peak-to-mean ratio of 1.64. Results for this small
peak-to-mean ratio provide a lower bound on the cost savings
under workloads with larger peak-to-mean ratios. As illustrated
in Figure 1(a), the Hotmail trace contains significant nightly
activity due to maintenance processes; however the data center
is provisioned for the peak foreground traffic. This creates a
dilemma about whether to include the maintenance activity
or not. We have performed experiments with both, but report
only the results with the spike removed (as illustrated in Figure
1(b)) because this leads to a more conservative estimate of the
cost savings. Building on this trace, we construct our workload
by placing a source at the geographical center of each US
state, co-located with a proxy or DNS server (as described in
Section II-D). The trace is shifted according to the time-zone
of each state, and scaled by the size of the population in the
state that has an Internet connection [40].

2) Data center description: To model an Internet-scale sys-
tem, we have 14 data centers, one at the geographic center of
each state known to have Google data centers [41]: California,
Washington, Oregon, Illinois, Georgia, Virginia, Texas, Florida,
North Carolina, and South Carolina.

We merge the data centers in each state and set Mi propor-
tional to the number of data centers in that state, while keeping
Σi∈NMiµi twice the total peak workload, maxt Σj∈JLj(t).
The network delays, dij , between sources and data centers are
taken to be proportional to the geographical distances between
them and comparable to the average queueing delays inside the
data centers. This lower bound on the network delay ignores
delay due to congestion or indirect routes.

3) Cost function parameters: To model the costs of the
system, we use the GLB-Q formulation. We set µi = 1 for all i,
so that the servers at each location are equivalent. We assume
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the energy consumption of an active server in one timeslot
is normalized to 1. We set constant electricity prices using
the industrial electricity price of each state in May 2010 [42].
Specifically, the price (cents per kWh) is 10.41 in California;
3.73 in Washington; 5.87 in Oregon, 7.48 in Illinois; 5.86 in
Georgia; 6.67 in Virginia; 6.44 in Texas; 8.60 in Florida; 6.03
in North Carolina; and 5.49 in South Carolina. In this section,
we set β = 1 according to the estimates in [26]; however
Figure 3 illustrates the impact of varying β.

4) Algorithm benchmarks: To provide benchmarks for the
performance of the algorithms presented here, we consider
three baselines, which are approximations of common ap-
proaches used in Internet-scale systems. They also allow im-
plicit comparisons with prior work such as [8]. The approaches
use different amounts of information to perform the cost
minimization. Note that each approach must use queueing
delay (or capacity information); otherwise the routing may lead
to instability.

Baseline 1 uses network delays but ignores energy price
when minimizing its costs. This demonstrates the impact of
price-aware routing. It also shows the importance of dynamic
capacity provisioning, since without using energy cost in the
optimization, every data center will keep every server active.

Baseline 2 uses energy prices but ignores network delay.
This illustrates the impact of location-aware routing on the
data center costs. Further, it allows us to understand the perfor-
mance improvement of our algorithms compared to those such
as [8], [9] that neglect network delays in their formulations.

Baseline 3 uses neither network delay information nor en-
ergy price information when performing its cost minimization.
Thus, the traffic is routed so as to balance the delays within
the data centers. Though naive, designs such as this are still
used by systems today; see [43].

B. Performance evaluation

The evaluation of our algorithms and the cost savings due
to optimal geographic load balancing will be organized around
the following topics.

1) Convergence: We start by considering the convergence
of each of the distributed algorithms. Figure 2(a) illustrates
the convergence of each of the algorithms in a static setting
for t = 11am, where load and electricity prices are fixed and
each phase in Algorithm 1 is considered as an iteration. It
validates the convergence analysis for both algorithms. Note
here Algorithm 2 and Algorithm 3 use a step size γ = 10;
this is much larger than that used in the convergence analysis,
which is quite conservative, and there is no sign of causing
lack of convergence.

To demonstrate the convergence in a dynamic setting, Fig-
ure 2(b) shows Algorithm 1’s response to the first day of the
Hotmail trace, with loads averaged over one-hour intervals for
brevity. One iteration is performed every 10 minutes. This
figure shows that even the slower algorithm, Algorithm 1,
converges fast enough to provide near-optimal cost. Hence,
the remaining plots show only the optimal solution.

2) Energy versus delay tradeoff: The optimization objective
we have chosen to model the data center costs imposes a
particular tradeoff between the delay and the energy costs, β.
It is important to understand the impact of this factor. Figure
3 illustrates how the delay and energy cost trade off under the
optimal solution as β changes. Thus, the plot shows the Pareto
frontier for the GLB-Q formulation. The figure highlights that
there is a smooth convex frontier with a mild ‘knee’.
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Fig. 3. Pareto frontier of the GLB-Q formulation as a function of β for three
different times (and thus arrival rates), PDT. Circles, x-marks, and triangles
correspond to β = 0.4, 1, and 2.5, respectively.

3) Cost savings: To evaluate the cost savings of geograph-
ical load balancing, Figure 4 compares the optimal costs to
those incurred under the three baseline strategies described in
the experimental setup. The overall cost, shown in Figures 4(a)
and 4(b), is significantly lower under the optimal solution than
all of the baselines (nearly 40% during times of light traffic).
Recall that Baseline 2 is the state of the art, studied in recent
papers such as [8], [9].

To understand where the benefits are coming from, let us
consider separately the two components of cost: delay and
energy. Figures 4(c) and 4(d) show that the optimal algorithm
performs well with respect to both delay and energy costs
individually. In particular, Baseline 1 provides a lower bound
on the achievable delay costs, and the optimal algorithm nearly
matches this lower bound. Similarly, Baseline 2 provides a
natural bar for comparing the achievable energy cost. At
periods of light traffic the optimal algorithm provides nearly the
same energy cost as this baseline, and (perhaps surprisingly)
during periods of heavy-traffic the optimal algorithm provides
significantly lower energy costs. The explanation for this
is that, when network delay is considered by the optimal
algorithm, if all the close data centers have all servers active, a
proxy might still route to them; however when network delay
is not considered, a proxy is more likely to route to a data
center that is not yet running at full capacity, thereby adding
to the energy cost.

4) Sensitivity analysis: We have studied the sensitivity of
the algorithms to errors in the inputs load Lj and network
delay dij . Estimation errors in Lj only affect the routing.
In our model the data centers adapt their number of servers
based on the true load, which counteracts suboptimal routing.
In our context, network delay was 15% of the cost, and so
large relative errors in delay had little impact. Baseline 2 can
be thought of as applying the optimal algorithm to extremely
poor estimates of dij (namely dij = 0), and so the Figure 4(a)
provides some illustration of the effect of estimation error.

VI. SOCIAL IMPACT

We now shift focus from the cost savings of the data center
operator to the social impact of geographical load balancing.
We focus on the impact of geographical load balancing on
the usage of “brown” non-renewable energy by Internet-scale
systems, and how this impact depends on electricity pricing.

Intuitively, geographical load balancing allows the traffic
to “follow the renewables”; thus providing increased usage
of green energy and decreased brown energy usage. How-
ever, such benefits are only possible if data centers forgo
static energy contracts for dynamic energy pricing (either
through demand response programs or real-time pricing). The
experiments in this section show that if dynamic pricing is
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Fig. 4. Impact of ignoring network delay and/or energy price on the cost incurred by geographical load balancing.

done optimally, then geographical load balancing can provide
significant social benefits by reducing non-renewable energy
consumption.

A. Experimental setup

To explore the social impact of geographical load balancing,
we use the setup described in Section V. However, we add
models for the availability of renewable energy, the pricing of
renewable energy, and the social objective.

1) The availability of renewable energy: To capture the
availability of wind and solar energy, we use traces of wind
speed and Global Horizontal Irradiance (GHI) obtained from
[44], [45] that have measurements every 10 minutes for a year.
The normalized generations of four states (CA, TX, IL, NC)
and the West/East Coast average are illustrated in Figure 5(a),
where 50% of renewable energy comes from solar.

Building on these availability traces, for each location we let
αi(t) denote the fraction of the energy that is from renewable
sources at time t, and let ᾱ = (|N |T )−1

∑T
t=1

∑
i∈N αi(t)

be the “penetration” of renewable energy. We take ᾱ = 0.30,
which is on the progressive side of the renewable targets among
US states [46].

Finally, when measuring the brown/green energy usage of
a data center at time t, we use simply

∑
i∈N αi(t)mi(t) as

the green energy usage and
∑
i∈N (1 − αi(t))mi(t) as the

brown energy usage. This models the fact that the grid cannot
differentiate the source of the electricity provided.

2) Dynamic pricing and demand response: Internet-scale
systems have spatial flexibility in energy usage that is not
available to traditional energy consumers; thus they are well
positioned to take advantage of demand response and real-time
pricing to reduce both their electricity costs and their brown
energy consumption.

To provide a simple model of demand response, we use
time-varying prices pi(t) in each time-slot that depend on the
availability of renewable resources αi(t) in each location.

The way pi(t) is chosen as a function of αi(t) will be of
fundamental importance to the social impact of geographical
load balancing. To highlight this, we consider a parameterized
“differentiated pricing” model that uses a price pb for brown
energy and a price pg for green energy. Specifically,

pi(t) = pb(1− αi(t)) + pgαi(t).

Note that pg = pb corresponds to static pricing, and we
show in the next section that pg = 0 corresponds to socially
optimal pricing. Our experiments vary pg ∈ [0, pb]. pb is the
same price as used in the previous section.

3) The social objective: To model the social impact of
geographical load balancing we need to formulate a social
objective. Like the GLB formulation, this must include a
tradeoff between the energy usage and the average delay users
of the system experience, because purely minimizing brown
energy use requires all mi = 0. The key difference between
the GLB formulation and the social formulation is that the
cost of energy is no longer relevant. Instead, the environmental
impact is important, and thus the brown energy usage should
be minimized. This leads to the following simple model for
the social objective:

min
m(t),λ(t)

T∑
t=1

∑
i∈N

(
(1− αi(t))

Ei(t)
pi(t)

+ β̃Di(t)
)

(20)

where Di(t) is the delay cost defined in (2), Ei(t) is the energy
cost defined in (1), and β̃ is the relative valuation of delay
versus energy. Further, we have imposed that the energy cost
follows from the pricing of pi(t) cents/kWh in timeslot t. Note
that, though simple, our choice of Di(t) to model the disutility
of delay to users is reasonable because lost revenue captures
the lack of use as a function of increased delay.

An immediate observation about the above social objective
is that to align the data center and social goals, one needs
to set pi(t) = (1 − αi(t))/β̃, which corresponds to choosing
pb = 1/β̃ and pg = 0 in the differentiated pricing model above.
We refer to this as the “optimal” pricing model.

B. The importance of dynamic pricing
To begin our experiments, we illustrate that optimal pricing

can lead geographical load balancing to “follow the renew-
ables.” Figure 5 shows this using the renewable traces shown in
Figure 5(a). By comparing Figures 5(b) to Figure 5(c), which
uses static pricing, the change in capacity provisioning, and
thus energy usage, is evident. For example, Figure 5(b) shows
a clear shift of service capacity from the west coast to the east
coast as solar energy becomes highly available in the east coast
and then switch back when solar energy is less available in the
east coast but high in the west coast. Though not explicit in
the figures, this “follow the renewables” routing has the benefit
of significantly reducing the brown energy usage since energy
use is more correlated with the availability of renewables. Thus,
geographical load balancing provides the opportunity to aid the
incorporation of renewables into the grid.

Figure 5 assumed the optimal dynamic pricing, but currently
data centers negotiate fixed price contracts. Although there are
many reasons why grid operators will encourage data center
operators to transfer to dynamic pricing over the coming years,
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Fig. 5. Geographical load balancing “following the renewables”. (a) Renewable availability. (b) and (c): Capacity provisionings of east coast and west coast
data centers when there are renewables, under (b) optimal dynamic pricing and (c) static pricing. (d) Reduction in social cost from dynamic pricing compared
to static pricing as a function of the weight for brown energy usage, 1/β̃, and β̃ = 0.1.

this is likely to be a slow process [13]. Thus, it is important to
consider the impact of partial adoption of dynamic pricing in
addition to full, optimal dynamic pricing. Figure 5(d) focuses
on this issue. To model the partial adoption of dynamic pricing,
we can consider pg ∈ [0, pb]. This figure shows that the benefits
provided by dynamic pricing are moderate but significant, even
at partial adoption (high pg). Another interesting observation
about Figure 5(d) is that the curves increase faster in the range
when 1/β̃ is small, which highlights that the social benefit
of geographical load balancing becomes significant even when
there is only moderate importance placed on energy. When
pg is higher than pb, which is common currently, the cost
increases and geographical load balancing can no longer help
to reduce non-renewable energy consumption. We omit the
results due to space constraints. For more recent results about
geographical load balancing in Internet-scale systems with
local renewable generation and data center demand response
to utility coincident peak charging, please refer to [22], [47]

VII. CONCLUDING REMARKS

This paper has focused on understanding algorithms for
and social impacts of geographical load balancing in Internet-
scaled systems. We have provided three distributed algorithms
that provably compute the optimal routing and provisioning
decisions for Internet-scale systems and we have evaluated
these algorithms using trace-based numerical simulations. Fur-
ther, we have studied the feasibility and benefits of providing
demand response for the grid via geographical load balancing.
Our experiments highlight that geographical load balancing can
provide an effective tool for demand response: when pricing
is done carefully, electricity providers can motivate Internet-
scale systems to “follow the renewables” and route to areas
where green renewable energy is available. This both eases the
incorporation of non-dispatchable renewables into the grid and
reduces brown energy consumption of Internet-scale systems.

While we have more recent results about online algorithms
for geographical load balancing [14] and workload manage-
ment for local data center [18], there are a number of interest-
ing directions for future work. With respect to the design of
distributed algorithms, one aspect that our model has ignored
is the switching cost (in terms of delay and wear-and-tear)
associated with switching servers into and out of power-saving
modes. Our model also ignores issues related to reliability
and availability, which are quite important in practice. With
respect to the social impact of geographical load balancing, our
results highlight the opportunity provided by geographical load
balancing for demand response; however there are many issues
left to be considered. For example, which demand response

market should Internet-scale systems participate in to minimize
costs? How can policy decisions such as cap-and-trade be used
to provide the proper incentives for Internet-scale systems, such
as [6]? Can Internet-scale systems use energy storage at data
centers in order to magnify cost reductions when participating
in demand response markets? Answering these questions will
pave the way for greener geographic load balancing.
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APPENDIX

We now prove the results from Section III, beginning with
the illuminating Karush-Kuhn-Tucker (KKT) conditions.

A. Optimality conditions

As GLB-Q is convex and satisfies Slater’s condition, the
KKT conditions are necessary and sufficient for optimal-
ity [23]; for the other models they are merely necessary.

GLB-Q: Let ωi ≥ 0 and ω̄i ≥ 0 be Lagrange multipliers
corresponding to (3d), and δij ≥ 0, νj and σi be those for
(3c), (3b) and (5b). The Lagrangian is then

L =
∑
i∈N

mipi + β
∑
j∈J

∑
i∈N

(
λij

µi − λi/mi
+ λijdij

)

−
∑
i∈N

∑
j∈J

δijλij +
∑
j∈J

νj

(
Lj −

∑
i∈N

λij

)
+
∑
i∈N

(ω̄i(mi −Mi)− ωimi) +
∑
i∈N

σi (miµi − λi)

The KKT conditions of stationarity, primal and dual feasibility
and complementary slackness are:

β

(
µi

(µi − λi/mi)2
+ dij

)
− νj − δij − σi = 0, ∀i, j (21)

δijλij = 0; δij ≥ 0, λij ≥ 0, ∀i, j (22)
σi (miµi−λi) = 0; σi ≥ 0, miµi−λi ≥ 0, ∀i (23)∑
i∈N

λij = Lj , ∀j (24)

pi − β
(

λi/mi

µi − λi/mi

)2

+ ω̄i − ωi + σiµi = 0, ∀i (25)

ω̄i(mi −Mi) = 0; ω̄i ≥ 0, mi ≤Mi, ∀i (26)
ωimi = 0; ωi ≥ 0, mi ≥ 0, ∀i. (27)
The conditions (21)–(24) determine the sources’ choice of

λij , and we claim they imply that source j will only send data
to those data centers i which have minimum marginal cost
dij + (1 +

√
p∗i /β)2/µi, where p∗i = pi − ωi + ω̄i. To see

this, let λ̄i = λi/mi. By (25), the marginal queueing delay
of data centre i with respect to load λij is µi/(µi − λ̄i)2 =
(1 +

√
p∗i /β)2/µi. Thus, from (21), at the optimal point,

dij +
(1 +

√
p∗i /β)2

µi
= dij +

µi

(µi − λ̄i)2
=
νj + δij

β
≥ νj

β
(28)

with equality if λij > 0 by (22), establishing the claim.
Note that the solution to (21)–(24) for source j depends on

λik, k 6= j, only through mi. Given λi, data center i finds
mi as the projection onto [0,Mi] of the solution m̂i = λi(1 +√
pi/β)/(µi

√
pi/β) with ω̄i = ωi = σi = 0.

GLB-LIN again decouples into data centers finding mi
given λi, and sources finding λij given the mi. Feasibility and
complementary slackness conditions (22), (24), (26) and (27)
are as for GLB-Q; the stationarity conditions are:
∂gi(mi, λi)

∂λi
+β

(
∂ (λifi(mi, λi))

∂λi
+ dij

)
−νj−δij =0, ∀i, j (29)

∂gi(mi, λi)

∂mi
+ βλi

∂fi(mi, λi)

∂mi
+ ω̄i − ωi =0, ∀i. (30)

Note the feasibility constraint (5b) of GLB-Q is no longer
explicitly required to ensure stability. In GLB-LIN, it is instead
assumed that f is infinite when the load exceeds capacity.

The objective function is strictly convex in data center i’s
decision variable mi, and so there is a unique solution m̂i(λi)
to (30) for ω̄i = ωi = 0, and the optimal mi given λi is the
projection of this onto the interval [0,Mi].

GLB in its general form has the same KKT conditions as
GLB-LIN, with the stationary conditions replaced by
∂gi
∂λi

+ r(fi + dij) +
∑
k∈J

λikr
′(fi + dik)

∂fi
∂λi
− νj − δij = 0, ∀i, j

∂gi
∂mi

+
∑
j∈J

λijr
′(fi + dij)

∂fi
∂mi

+ ω̄i − ωi = 0, ∀i
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where r′ denotes the derivative of r(·).
GLB again decouples, since it is convex because r(·) is

convex and increasing. However, now data center i’s problem
depends on all λij , rather than simply λi.

B. Characterizing the optima
Lemma 8 will help prove the results of Section III.

Lemma 8. Consider the GLB-LIN formulation. Suppose that
for all i, Fi(mi, λi) is jointly convex in λi and mi, and
differentiable in λi where it is finite. If, for some i, the dual
variable ω̄i > 0 for an optimal solution, then mi = Mi for
all optimal solutions. Conversely, if mi < Mi for an optimal
solution, then ω̄i = 0 for all optimal solutions.

Proof: Consider an optimal solution S with i ∈ N such
that ω̄i > 0 and hence mi = Mi. If there exists another
optimal solution S′ such that mi < Mi. Since the cost function
is jointly convex in λij and mi, any convex combination of
S and S′ must also be optimal. However, since Fi(mi, λi)
is strictly convex in mi, the linear combination of S and S′

strictly decreases the cost, which contradicts with the fact that
S and S′ are optimal solutions.

Proof of Theorem 1: Consider first the case where there
exists an optimal solution with mi < Mi. By Lemma 8, ω̄i = 0
for all optimal solutions. Recall that m̂i(λi), which defines the
optimal mi, is strictly convex. Thus, if different optimal solu-
tions have different values of λi, then a convex combination
of the two yielding (m′i, λ

′
i) would have m̂i(λ

′
i) < m′i, which

contradicts the optimality of m′i.
Next consider the case where all optimal solutions have

mi = Mi. In this case, consider two solutions S and S′ that
both have mi = Mi. If λi is the same under both S and S′,
we are done. Otherwise, since Fi(mi, λi) is strictly convex in
λi, the linear combination of S and S′ strictly decreases the
cost, which contradicts with the fact that S and S′ are optimal
solutions.

Proof of Theorem 2: The proof when mi = Mi for all
optimal solutions is parallel to that of Theorem 1. Otherwise,
when mi < Mi in an optimal solution, the definition of m̂
gives λi

mi
= µi/(

√
βi/pi + 1) for all optimal solutions.

Proof of Theorem 3: For each optimal solution S, con-
sider an undirected bipartite graph G with a vertex representing
each source and each data center and with an edge connecting
i and j when λij > 0. We will show that at least one of these
graphs is acyclic. The theorem then follows since an acyclic
graph with X nodes has at most X − 1 edges.

To prove that there exists one optimal solution with acyclic
graph we will inductively reroute requests in a way that re-
moves cycles while preserving optimality. Suppose G contains
a cycle. Let C be a minimal cycle, i.e., no strict subset of C
is a cycle, and let C be directed.

Construct a new solution S(ξ) from S by adding ξ to λij if
(i, j) ∈ C, and subtracting ξ from λij if (j, i) ∈ C. Note that
this does not change the λi. To see that S(ξ) is maintains the
optimal cost, first note that the change in the objective function
of the GLB between S and S(ξ) is equal to

ξ
∑

(j,i)∈C

(
r(dij + fi(mi, λi))− r(dji + fj(mj , λj))

)
(31)

Next note that the multiplier δij = 0 since λij > 0 at S.
Further, the condition for stationarity in λij can be written as
Xi + r(dij + fi(mi, λi))− νj = 0, where Xi does not depend

on the choice of j. Since C is minimal, for each (i, j) ∈ C
where i ∈ I and j ∈ J there is exactly one (j′, i) with j′ ∈ J ,
and vice versa. Thus,

0 =
∑

(j,i)∈C

(Xi + r(dij + fi(mi, λi))− νj)

−
∑

(i,j)∈C

(Xi + r(dij + fi(mi, λi))− νj)

=
∑

(j,i)∈C

r(dij + fi(mi, λi))−
∑

(i,j)∈C

r(dij + fi(mi, λi)).

Hence, by (31) the objective of S(ξ) and S are the same.
To complete the proof, we let (i∗, j∗) = arg min(i,j)∈C λij .

Then S(λi∗,j∗) has λi∗,j∗ = 0. Thus, S(λi∗,j∗) has at least one
fewer cycle, since it has broken C. Further, by construction, it
is still optimal.

Proof of Theorem 4:
It is sufficient to show that, if λkjλk′j > 0 then either mk =

Mk or mk′ = Mk′ . Consider a case when λkjλk′j > 0.
For a generic i, define ci = (1 +

√
pi/β)2/µi as the

marginal cost (28) when the Lagrange multipliers ω̄i = ωi = 0.
Since the pi are chosen from a continuous distribution, we have
that with probability 1

ck − ck′ 6= dk′j − dkj . (32)

However, (28) holds with equality if λij > 0, and so
dkj + (1 +

√
p∗k/β)2/µk = dk′j + (1 +

√
p∗k′/β)2/µk′ . By

the definition of ci and (32), this implies either p∗k 6= pk or
p∗k′ 6= pk. Hence at least one of the Lagrange multipliers ωk,
ω̄k, ωk′ or ω̄k′ must be non-zero. However, ωi > 0 would
imply mi = 0 whence λij = 0 by (23), which is false by
hypothesis, and so either ω̄k or ω̄k′ is non-zero, giving the
result by (26).

C. Proofs for Algorithm 1
To prove Theorem 5 we apply a variant of Proposition 3.9

of Ch 3 in [48], which gives that if
(i) F (m,λ) is continuously differentiable and convex in the

convex feasible region (3b)–(3d);
(ii) Every limit point of the sequence is feasible;

(iii) Given the values of λ−j and m, there is a unique
minimizer of F with respect to λj , and given λ there
is a unique minimizer of F with respect to m.

Then, every limit point of (m(τ),λ(τ))τ=1,2,... is an optimal
solution of GLB-Q.

This differs slightly from [48] in that the requirement that
the feasible region be closed is replaced by the feasibility of
all limit points, and the requirement of strict convexity with
respect to each component is replaced by the existence of a
unique minimizer. However, the proof is unchanged.

Proof of Theorem 5: To apply the above to prove Theorem
5, we need to show that F (m,λ) satisfies the differentiability
and continuity constraints under the GLB-Q model.

GLB-Q is continuously differentiable and, as noted in Ap-
pendix A, a convex problem. To see that every limit point
is feasible, note that the only infeasible points in the closure
of the feasible region are those with miµi = λi. Since the
objective approaches∞ approaching that boundary, and Gauss-
Seidel iterations always reduce the objective [48], these points
cannot be limit points.

It remains to show the uniqueness of the minimum in m and
each λj . Since the cost is separable in the mi, it is sufficient
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to show that this applies with respect to each mi individually.
If λi = 0, then the unique minimizer is mi = 0. Otherwise

∂2F (m,λ)

∂m2
i

= 2βµi
λ2
i

(miµi − λi)3

which by (5b) is strictly positive. The Hessian of F (m,λ)
with respect to λj is diagonal with ith element

2βµi
m2
i

(miµi − λi)3
> 0

which is positive definite except the points where some mi =
0. However, if mi = 0, the unique minimum is λij = 0. Note
we cannot have all mi = 0. Except these points, F (m,λ) is
strictly convex in λj given m and λ−j . Therefore λj is unique
given m.

Part (ii) of Theorem 5 follows from part (i) and the conti-
nuity of F (m,λ). Part (iii) follows from part (i) and Theorem
2, which provides the uniqueness of optimal per-server arrival
rates (λi(τ)/mi(τ), i ∈ N).

D. Proofs for Algorithm 2
As discussed in the section on Algorithm 2, we will prove

Theorem 6 in three steps. First, we will show that, starting
from an initial feasible point λ(0), Algorithm 2 generates a
sequence λ(τ) that lies in the set Λ := Λ(φ) defined in (14), for
τ = 0, 1, . . . . Moreover, ∇F (λ) is Lipschitz over Λ. Finally,
this implies that F (λ(τ)) moves in a descent direction that
guarantees convergence.

Lemma 9. Given an initial point λ(0) ∈
∏
j Λj , let φ :=

F (λ(0)). Then
1) λ(0) ∈ Λ := Λ(φ);
2) If λ∗ is optimal then λ∗ ∈ Λ;
3) If λ(τ) ∈ Λ, then λ(τ + 1) ∈ Λ.

Proof: We claim F (λ) ≤ φ implies λ ∈ Λ. This is true
because φ ≥ F (λ) ≥

∑
k

βλk

µk−λk/mk(λk) ≥
βλi

µi−λi/mi(λi)
≥

βλi

µi−λi/Mi
,∀i. Therefore λi ≤ φ

φ+βMi
Miµi,∀i. Consequently,

the intial point λ(0) ∈ Λ and the optimal point λ∗ ∈ Λ because
F (λ∗) ≤ F (λ).

Next we show that λ(τ) ∈ Λ implies Zj(τ + 1) ∈ Λ, where
Zj(τ+1) is λ(τ) except λj(τ) is replaced by zj(τ). This holds
because Zjik(τ + 1) = λik(τ) ≥ 0,∀k 6= j,∀i and

∑
i Z

j
ik(τ +

1) =
∑
i λik(τ) = Lk,∀k 6= j. From the definiition of the

projection on Λ̂j(τ), Zjij(τ + 1) ≥ 0,∀i,
∑
i Z

j
ij(τ + 1) = Lj ,

and
∑
k Z

j
ik(τ + 1) ≤ φ

φ+βMi
Miµi,∀i. These together ensure

Zj(τ + 1) ∈ Λ.
The update λj(τ + 1) = |J|−1

|J| λj(τ) + 1
|J|zj(τ),∀j is

equivalent to λ(τ+1) =
∑

j Zj(τ+1)

|J| . Then from the convexity
of Λ, we have λ(τ + 1) ∈ Λ.

Let F (M,λ) be the total cost when all data centers use all
servers, and∇F (M,λ) be the derivatives with respect to λ. To
prove that ∇F (λ) is Lipschitz over Λ, we need the following
intermediate result. We omit the proof due to space constraint.

Lemma 10. For all λa,λb ∈ Λ, we have∥∥∥∇F (λb)−∇F (λa)
∥∥∥

2
≤
∥∥∥∇F (M,λb)−∇F (M,λa)

∥∥∥
2
.

Lemma 11.
∥∥∥∇F (λb)−∇F (λa)

∥∥∥
2
≤ K

∥∥∥λb − λa
∥∥∥

2
,

∀λa,λb ∈ Λ, where K = |J |maxi 2(φ+ βMi)
3/(β2M4

i µ
2
i ).

Proof: Following Lemma 10, here we continue to show∥∥∥∇F (M,λb)−∇F (M,λa)
∥∥∥

2
≤ K

∥∥∥λb − λa
∥∥∥

2
.

The Hessian ∇2F (M,λ) of F (M,λ) is given by

∇2Fij,kl(M,λ) =

{
2βµi/Mi

(µi−λi/Mi)3
if i = k

0 otherwise.

Then, by the matrix form of Hölder’s inequality and
the symmetry of ∇2F (M,λ), we have

∥∥∇2F
∥∥2

2
≤∥∥∇2F

∥∥
1

∥∥∇2F
∥∥
∞ =

∥∥∇2F
∥∥2

∞. Finally, we have

∥∥∇2F (M,λ)
∥∥
∞ = max

ij

{∑
kl

∇2Fij,kl(M,λ)

}

= max
i

{
|J | 2βµi/Mi

(µi − λi/Mi)3

}
≤ |J |max

i

2(φ+ βMi)
3

β2M4
i µ

2
i

.

In the last step we substitute λi by φMiµi

φ+βMi
because λi ≤

φ
φ+βMi

Miµi,∀i and 2µi/Mi

(µi−λi/Mi)3
is increasing in λi.

Lemma 12. When applying Algorithm 2 to GLB-Q,
(a) F (λ(τ + 1)) ≤ F (λ(τ)) − ( 1

γ̄m
−

K
2 ) ‖λ(τ + 1)− λ(τ)‖22, where K =
|J |maxi 2(φ+ βMi)

3/(β2M4
i µ

2
i ), γ̄m = maxj γj . Therefore

F (λ(τ + 1)) < F (λ(τ)) if 0 < γ̄m < 2/K.
(b) λ(τ + 1) = λ(τ) if and only if λ(τ) minimizes F (λ)

over the set Λ.
(c) The mapping T (λ(τ)) = λ(τ + 1) is continuous.

Proof: From the Lemma 11, we know∥∥∥∇F (λb)−∇F (λa)
∥∥∥

2
≤ K

∥∥∥λb − λa
∥∥∥

2
,∀λa ∈ Λ,∀λb ∈ Λ

where K = |J |maxi 2(φ+ βMi)
3/(β2M4

i µ
2
i ).

Here Zj(τ + 1) ∈ Λ,λ(τ) ∈ Λ, therefore we have∥∥∇F (Zj(τ + 1))−∇F (λ(τ))
∥∥

2
≤ K

∥∥Zj(τ + 1)− λ(τ)
∥∥

2
.

From the convexity of F (λ), we have

F (λ(τ + 1)) = F

(∑
j Z

j(τ + 1)

|J |

)
≤ 1

|J |
∑
j

F (Zj(τ + 1))

≤ 1

|J |
∑
j

(
F (λ(τ))−

(
1

γj
− K

2

)∥∥Zj(τ + 1)− λ(τ)
∥∥2

2

)

= F (λ(τ))−
∑
j

(
1

γj
− K

2

) ∥∥Zj(τ + 1)− λ(τ)
∥∥2

2

|J |

≤ F (λ(τ))−
(

1

γm
− K

2

) ∑
j

∥∥Zj(τ + 1)− λ(τ)
∥∥2

2

|J |

where K = |J |maxi 2(φ+ βMi)
3/(β2M4

i µ
2
i ).

The first line is from the update rule of λ(τ). The second
line is from the convexity of F (λ). The third line is from
the property of gradient projection. The last line is from the
definition of γm.
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Then from the convexity of ‖·‖22, we have∑
j

∥∥Zj(τ + 1)− λ(τ)
∥∥2

2

|J |
≥

∥∥∥∥∥
∑
j

(
Zj(τ + 1)− λ(τ)

)
|J |

∥∥∥∥∥
2

2

=

∥∥∥∥∥
∑
j Z

j(τ + 1)

|J |
− λ(τ)

∥∥∥∥∥
2

2

= ‖λ(τ + 1)− λ(τ)‖22 .

Therefore we have

F (λ(τ +1)) ≤ F (λ(τ))−
(

1

γm
− K

2

)
‖λ(τ + 1)− λ(τ)‖22 .

(b) λ(τ+1) = λ(τ) is equivalent to Zj(τ+1) = λj(τ),∀j.
Moreover, if Zj(τ + 1) = λj(τ),∀j, then from the definition
of each gradient projection, we know it is optimal. Conversely,
if λ(τ) minimizes F (λ(τ)) over the set Λ, then the gradient
projection always projects to the original point, hence Zj(τ +
1) = λj(τ),∀j. See also [48, Ch 3 Prop. 3.3(b)] for reference.

(c) Since F (λ) is continuously differentiable, the gradient
mapping is continuous. The projection mapping is also con-
tinuous. T is the composition of the two and is therefore
continuous.

Proof of Theorem 6: Lemma 12 is parallel to that of
Proposition 3.3 in Ch 3 of [48], and Theorem 6 here is parallel
to Proposition 3.4 in Ch 3 of [48]. Therefore, the proof for
Proposition 3.4 immediately applies to Theorem 6. We also
have F (λ) is convex in λ, which completes the proof.

E. Proofs for Algorithm 3
We use the following additional lemmas to prove the con-

vergence result of Algorithm 3.

Lemma 13. Under Algorithm 3, λ(τ) ∈ Λ′, ∀τ = 0, 1, 2, . . .

Proof: Since Λ ⊂ Λ′, we know the intial point λ(0) ∈ Λ′

and the optimal solution λ∗ ∈ Λ′.
If λ(τ) ∈ Λ′, then the choice of γ↓j ensures λij(τ + 1) ≥ 0.

Moreover, the choice of θj(τ) and the update rule (19) give∑
i∈Ωj(τ)

λij(τ + 1)

=
∑

i∈Ωj(τ)

λij(τ)− γj(τ)(
∑

i∈Ωj(τ)

(∇ijF (τ)− θj(τ))

=
∑

i∈Ωj(τ)

λij(τ).

Since λij(τ + 1) = λij(τ) for i 6∈ Ωj(τ), we have
∑
i λij(τ +

1) =
∑
i λij(τ) = Lj .

Finally, the definition of γ↑j ensures

λi(τ + 1) =
∑

j:i∈Γ↑j (τ)

λij(τ + 1) +
∑

j:i/∈Γ↑j (τ)

λij(τ + 1)

≤
∑

j:i∈Γ↑j (τ)

(
λij(τ)− γ↑j (τ)(∇ijF (τ)− θj(τ))

)
+
∑

j:i/∈Γ↑j (τ)

λij(τ)

≤
∑
j

λij(τ) +
φ+ βMi/2

φ+ βMi
Miµi −

∑
j

λij(τ)

=
φ+ βMi/2

φ+ βMi
Miµi

Lemma 14. For all λa ∈ Λ′, and all λb ∈ Λ′,∥∥∥∇F (λb)−∇F (λa)
∥∥∥

2
≤ K ′

∥∥∥λb − λa
∥∥∥

2
.

where K ′ is defined in Algorithm 3.

The proof of this lemma is similar to that of Lemma 11
except that the constraint λi ≤ φ

φ+βMi
Miµi is replaced by

λi ≤ φ+βMi/2
φ+βMi

Miµi, resulting in different Lipschitz modulus.

Lemma 15. Let γ(τ) = maxj γj(τ). Then under Algorithm 3,
F (λ(τ + 1)) ≤ F (λ(τ))− ( 1

γ(τ) −
K′

2 ) ‖λ(τ + 1)− λ(τ)‖22.

Although this result seems similar to a standard one proved
by the projection argument, here we do not have a projection.
Therefore we devise a different proof technique.

Proof: From Lemma 14 and Proposition A.32 in [48],

F (λ(τ + 1)) ≤F (λ(τ)) + (λ(τ + 1)− λ(τ))′∇F (τ)

+
K ′

2
‖λ(τ + 1)− λ(τ)‖22 ,

where we take λ(τ) as a |N ||J |-dimension vector. The proof
is completed by expanding the second term as

(λ(τ + 1)− λ(τ))′∇F (τ)

=
∑
j

∑
i∈Ωj(τ)

(−γj(τ)(∇ijF (τ)− θj(τ))∇ijF (τ)

= −
∑
j

γj(τ)
∑

i∈Ωj(τ)

(∇ijF (τ)− θj(τ))(∇ijF (τ)− θj(τ))

= −
∑
j

1

γj(τ)
(λij(τ + 1)− λij(τ))2

≤ − 1

γ(τ)
‖λ(τ + 1)− λ(τ)‖22 ,

where the second step uses the definition in (17).
With the lemmas above, we now prove Theorem 7.

Proof of Theorem 7: Let J ε ≡ {(i, j) : 0 < λij ≤ ε
and ∇ijF (λ(τ)) > θj(τ)} be those loads prevented from
decreasing in (19). We first show that Algorithm 3 has an
accumulation point λa satisfying the KKT conditions except
for (22) for (i, j) ∈ J ε. We then construct an optimization
GLB′ solved by λa whose KKT conditions match GLB-Q
except for (22) for (i, j) ∈ J ε, and bound the difference
between its optimum and that of GLB-Q.

(1) Note γ↓j (τ) is bounded below since λij(τ) > ε for
any i ∈ Γ↓j (τ) and ∇ijF (λ(τ)) − θj(τ) is bounded above;
γ↑j (τ) is also bounded below since φ+βMi/2

φ+βMi
Miµi − λi(τ) ≥

βMi/2
φ+βMi

Miµi and ∇ijF (λ(τ))−θj(τ) is bounded above. Since
the third case in (18) is constant, γj(τ) is bounded below.
Hence ‖λ(τ + 1)− λ(τ)‖22 converges to 0 only if the corre-
sponding KKT conditions hold except for the complementary
slackness conditions in (22) for the (i, j) ∈ J ε. Since there
is an ε > 0 such that γ(τ) < 2/K ′ − ε, Lemma 15 ensures
Algorithm 3 makes a substantial decrease each step until the
KKT conditions hold except for (22) for (i, j) ∈ J ε.

(2) Algorithm 3 has an accumulation point, λa, since F (λ)
converges due to being bounded below, and λ comes from a
compact set. Next, we construct GLB′ solved by λa whose
KKT conditions match those of GLB-Q except for (22) for
(i, j) ∈ J ε, and show that |F (λa)− F (λ∗)| = O(ε), where ε
is the error tolerance in λij .
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Let λε be the matrix with λεij = λaij , if (i, j) ∈ J ε, and
λεij = 0 otherwise. Define λεi =

∑
j λ

ε
ij and denote by λεi

the vector of (λεij)j∈J . Define GLB′ to be solving (5a) subject
to (5b), (3b), (3d) and λij ≥ λεij for all i ∈ N and j ∈ J .
The KKT conditions of GLB′ match those of GLB-Q, except
that the analog of (22) is δij(λij − λεij) = 0. For (i, j) ∈ J ε,
this holds by the definition of λε. All other conditions were
established in step 1) above, and so λa optimizes GLB′.

If λ∗ ≥ λε, λa optimizes GLB-Q, and the result is proved.
Otherwise, we perturb λ∗ to yield λ′′ which is feasible for
GLB′, and bound the resulting increase in cost, as follows.

First construct a solution λ′ from λ∗ where λ′i ≥ λεi . If
there exist some i ∈ Sε with λ∗i < λεi , we construct the new
λ′i by moving some traffic λεi − λ∗i from i /∈ Sε to these data
centers i ∈ Sε to make λ′i = λεi . Now we compare F (λ′) and
F (λ∗). By moving λεi − λ∗i , we decrease the cost on some
i /∈ Sε, but increase that on i ∈ Sε. Since λεi−λ∗i ≤ λεi ≤ |J |ε
and ε ≤ mini

(
Miµi/(1 +

√
β/pi)

)
/|J |, λ′i = λεi ≤ |J |ε ≤

Miµi/(1 +
√
β/pi) for i ∈ Sε. Within this region, m′i =

(1 +
√
β/pi)λ

′
i/µi optimizes (5a). Neglecting delay dij , the

increase in term i is no larger than β|J |ε
(

1 +
√
pi/β

)2

/µi.
The delay cost increase is at most β|J |εmaxj dij . Thus
F (λ′) ≤ F (λ∗) + β|J |ε

∑
i

(
(1 +

√
pi/β)2/µi + maxj dij

)
.

From λ′ we construct λ′′ by reassigning traffic cycli-
cally to make λ′′ij ≥ λεij ,∀i, j. The total cost increase is
bounded by β|J |ε

∑
i maxj dij . Therefore F (λ′′) ≤ F (λ∗) +

β|J |ε
∑
i

(
(1 +

√
pi/β)2/µi + 2 maxj dij

)
= F (λ∗) + Bε.

To complete the proof, note F (λa) ≤ F (λ′′), since λ′′ is
feasible for GLB′.
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