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ABSTRACT
We consider online convex optimization (OCO) problems
with switching costs and noisy predictions. While the design
of online algorithms for OCO problems has received consid-
erable attention, the design of algorithms in the context of
noisy predictions is largely open. To this point, two promis-
ing algorithms have been proposed: Receding Horizon Con-
trol (RHC) and Averaging Fixed Horizon Control (AFHC).
The comparison of these policies is largely open. AFHC has
been shown to provide better worst-case performance, while
RHC outperforms AFHC in many realistic settings. In this
paper, we introduce a new class of policies, Committed Hori-
zon Control (CHC), that generalizes both RHC and AFHC.
We provide average-case analysis and concentration results
for CHC policies, yielding the first analysis of RHC for OCO
problems with noisy predictions. Further, we provide explicit
results characterizing the optimal CHC policy as a function
of properties of the prediction noise, e.g., variance and cor-
relation structure. Our results provide a characterization
of when AFHC outperforms RHC and vice versa, as well as
when other CHC policies outperform both RHC and AFHC.

1. INTRODUCTION
In an online convex optimization (OCO) problem, an algo-

rithm interacts with an environment in a sequence of rounds.
In round t the algorithm chooses an action xt from a convex
decision/action space F , the environment reveals a convex
cost function ht, and the algorithm pays cost ht(xt). The
goal of the algorithm is to minimize cost over a horizon T .

OCO has a long and rich history, with applications in wide-
ranging areas of computer science and beyond [52, 26, 21,
48, 32, 33, 34, 35, 36]. In recent years, OCO has seen con-
siderable interest from applications in the networking and
distributed systems communities. In particular, OCO has
enabled novel designs for dynamic capacity planning, load
shifting and demand response for data centers [28, 33, 34,
35, 39], geographical load balancing of internet-scale systems
[32, 45], electrical vehicle charging [15, 28], video streaming
[40, 24], and thermal management of systems-on-chip [49,
50, 7].

Applications of OCO in the networking and distributed
systems communities typically differ in two significant ways
from the classical OCO literature: (i) actions incur switching
costs and (ii) noisy predictions about the future are available.

Switching costs capture the cost that is incurred by sys-
tems when moving from one state to another. This is mod-
eled by adding an extra term to the cost paid by the al-
gorithm in each round, i.e., the cost becomes ht(xt) + β ‖
xt − xt−1 ‖, where ‖ · ‖ is a norm (often the one-norm), and
β ∈ R+. This additional term models, e.g., the cost of turn-

ing servers on/off in dynamic capacity planning [28, 33, 34,
35, 39, 17] or the cost of changing a quality level in the case
of video streaming [23, 24]. The addition of switching costs
makes the algorithmic problem harder as it forces current
actions to depend on beliefs about future cost functions.

Predictions are of great importance in networking and dis-
tributed systems. Despite the considerable noise that is of-
ten inherent in forecasts, predictions can be extremely useful.
For example, predictions of future demand are critical in the
case of dynamic capacity planning in data centers to ensure
sufficient capacity [16, 29, 19, 28, 33, 34, 35, 39, 17]. Un-
fortunately, designing online algorithms that exploit noisy
predictions is an open, challenging topic.

In this paper, we focus on OCO problems that have both
switching costs and noisy predictions. While there is a sig-
nificant literature on OCO problems with switching costs
[13, 4, 20, 5, 32, 33, 6], there is much less work studying
the impact of predictions [32, 13, 33]. Further, the analytic
work that does focus on predictions typically assumes perfect
lookahead, the lone exception being Chen et al. [13].

Two promising algorithms. Perhaps the most natu-
ral starting point for studying algorithms for OCO prob-
lems with switching costs and noisy predictions is the class
of Model Predictive Control (MPC) algorithms. MPC is a
prominent and widely-studied class of algorithms in the con-
trol theory community [8, 46, 30, 12, 18, 37], and much of
the work studying predictions in OCO problems has focused
on MPC and its variants, e.g., [32, 15, 14].

From this work, two promising algorithms have emerged:
Receding Horizon Control (RHC) and Averaging Fixed Hori-
zon Control (AFHC). (See Section 3 for formal definitions of
these two algorithms.) Both algorithms use a prediction hori-
zon/window of size w, but make decisions in very different
ways. RHC considers, at each point in time, the predictions
available in the current horizon, determines the trajectory of
w actions that minimize the cost within that horizon, and
then commits only the first action in that trajectory. By
contrast, AFHC works by averaging the actions of multi-
ple Fixed Horizon Control (FHC) algorithms, each of which
work similarly to RHC but commit to all w actions in a given
prediction horizon.

RHC has a long history in the control theory literature
[8, 46, 30, 12, 18, 37], but was first studied analytically in
the context of OCO in [32]. In [32], RHC was proven to
have a competitive ratio (the ratio of the cost incurred by
RHC to the cost incurred by the offline optimal algorithm)
of 1 + O(1/w) in the one-dimensional setting, where w is
the size of the prediction window. However, the competitive
ratio of RHC is 1+Ω(1) in the general case, and thus does not
decrease to one as the prediction window grows in the worst
case; this is despite the fact that predictions are assumed to



have no noise (the perfect lookahead model). To this point
there is no analytic work characterizing the performance of
RHC with noisy predictions.

The poor worst-case performance of RHC motivated the
proposal of AFHC [32], which provides an interesting con-
trast. While RHC is entirely “forward looking”, AFHC keeps
an “eye on the past” by respecting the actions of FHC algo-
rithms in previous timesteps and thus avoids switching costs
incurred by moving too quickly between actions. As a re-
sult, AFHC achieves a competitive ratio of 1 + O(1/w) in
both single and multi-dimensional action spaces, under the
assumption of perfect lookahead, [32]. Further, strong guar-
antees on the performance of AFHC have been established
in the case of noisy predictions [13].

Surprisingly, while the competitive ratio of AFHC is smaller
than that of RHC, RHC provides better performance than
AFHC in many practical cases. Further, RHC is seemingly
more resistant to prediction noise in many settings (see Fig-
ure 1 for an example), though no analytic results are known
for this case. Thus, at this point, two promising algorithms
have been proposed, but it is unclear in what settings each
should be used and it is unclear if there are other algorithms
that dominate these two proposals.

Contributions of this paper. The goal of this paper
is to provide new insights into the design of algorithms for
OCO problems with noisy predictions. In particular, our
results highlight the importance of commitment in online
algorithms, and the significant performance gains that can
be achieved by tuning the commitment level of an algorithm
as a function of structural properties of the prediction noise
such as variance and correlation structure.

In terms of commitment, RHC and AFHC represent two
extreme algorithm designs – RHC commits to only one ac-
tion at a time whereas AFHC averages over algorithms that
commit to actions spanning the whole prediction horizon.
While the non-committal nature of RHC enables quick re-
sponse to improved predictions, it makes RHC susceptible to
switching costs. On the other hand, the cautious nature of
AFHC averts switching costs but makes it entirely dependent
on the accuracy of predictions.

Motivated by these deficiencies in existing algorithm de-
sign, we introduce a new class of policies, Committed Hori-
zon Control (CHC), that allows for arbitrary levels of com-
mitment and thus subsumes RHC and AFHC. We present
both average-case analysis (Theorems 1 and 6) and concen-
tration results (Theorems 7) for CHC policies. In doing so,
we provide the first analysis of RHC with noisy predictions.

Our results demonstrate that intermediate levels of com-
mitment can provide significant reductions in cost, to the
tune of more than 50% (e.g., Figure 4(a), Figure 5(a) and
Figure 6(a)). Further, our results also reveal the impact of
correlation structure and variance of prediction noise on the
optimal level of commitment, and provide simple guidelines
on how to choose between RHC and AFHC.

These results are enabled by a key step in our proof that
transforms the control strategy employed by the offline opti-
mal algorithm, OPT to the strategy of CHC via a trajectory
of intermediate strategies. We exploit the structure of our
algorithm at each intermediate step to bound the difference
in costs; the sum of these costs over the entire transforma-
tion then gives us a bound on the difference in costs between
OPT and CHC .

To summarize, this paper makes the following contribu-
tions to the literature on OCO with noisy predictions:

• We provide the first analysis of RHC for OCO problems
with noisy predictions.
• We characterize when RHC/AFHC is better as a func-

tion of the correlation structure and variance of predic-

tion noise.
• We introduce and analyze a new class of Committed

Horizon Control (CHC) policies that generalizes AFHC
and RHC.
• We highlight how the commitment level of a policy

should be tuned depending on structural properties of
prediction noise. By optimizing the level of commit-
ment, CHC policies can achieve performance improve-
ments of more than 50% over AFHC and RHC.

2. PROBLEM FORMULATION
We consider OCO problems with switching costs and noisy

predictions. We first introduce OCO with switching costs
(Section 2.1) and then describe the model of prediction noise
(Section 2.2). Finally, we discuss the performance metric we
consider in this paper – the competitive difference – and
how it relates to common measures such as regret and the
competitive ratio (Section 2.3).

2.1 OCO with switching costs
An OCO problem with switching costs considers a con-

vex, compact decision/action space F ⊂ Rn and a sequence
of cost functions {h1, h2, . . .}, where each ht : F → R+ is
convex, and F is a compact set.

At time t, the following sequence occurs: (i) the online
algorithm first chooses an action, which is a vector xt ∈ F ⊂
Rn, (ii) the environment chooses a cost function ht from a
set C, and (iii) the algorithm pays a stage cost ht(xt) and a
switching cost β ‖xt − xt−1‖, where β ∈ R+, and ‖·‖ can be
any norm in Rn, and F is bounded in terms of this norm,
i.e., ‖x− y‖ ≤ D for all x, y ∈ F .

Motivated by path planning and image labeling problems
[44, 13, 41], we consider a variation of the above that uses
a parameterized cost function ht(xt) = h(xt, yt), where the
parameter yt ∈ Rm is the focus of prediction. This yields a
total cost over T rounds of

min
xt∈F

T∑
t=1

h(xt, yt) + β ‖xt − xt−1‖ , (1)

Note that prior work [13] considers only the case where
a least-square penalty is paid each round, i.e., an online
LASSO formulation with h(xt, yt) = 1

2
‖yt −Kxt‖22. In this

paper, we consider more general h. We impose that h(xt, yt)
is separately convex in both xt and yt along with the follow-
ing smoothness criteria.

Definition 1. A function h is α-Hölder continuous in
the second argument for α ∈ R+, i.e., for all x ∈ F , there
exists G ∈ R+, such that

|h(x, y1)− h(x, y2)| ≤ G ‖y1 − y2‖α2 , ∀y1, y2.

G and α control the sensitivity of the cost function to a dis-
turbance in y.

For this paper, we focus on α ≤ 1, since the only α-Hölder
continuous function with α > 1 is the constant function [2].
When α = 1, h is G-Lipschitz in the second argument; if h
is differentiable in the second argument, this is equivalent to
‖∂yh(x, y)‖2 ≤ G, ∀x, y.

2.2 Modeling prediction noise
Predictions about the future play a crucial role in almost

all online decision problems. However, while significant effort
has gone into designing predictors, e.g., [51, 42, 43, 25], much
less work has gone into integrating predictions efficiently into
algorithms. This is, in part, due to a lack of tractable, prac-
tical models for prediction noise. As a result, most papers



that study online decision making problems, such as OCO,
use numerical simulations to evaluate the impact of predic-
tion noise, e.g., [1, 3, 35, 39].

The papers that do consider analytic models often use ei-
ther i.i.d. prediction noise or worst-case bounds on predic-
tion errors for tractability. An exception is the recent work
[13, 15] which introduces a model for prediction noise that
captures three important features of real predictors: (i) it
allows for correlations in prediction errors (both short range
and long range); (ii) the quality of predictions decreases the
further in the future we try to look ahead; and (iii) predic-
tions about the future are refined as time passes. Further,
[13] shows that it is tractable in the context of OCO. Thus,
we adopt the model from [13] for this paper.

Specifically, throughout this paper we model prediction
error via the following equation:

yt − yt|τ =

t∑
s=τ+1

f(t− s)e(s), (2)

where yt|τ is the prediction of yt made at time τ < t. This
model characterizes prediction error as white noise being
passed through a causal filter. In particular, the prediction
error is a weighted linear combination of per-step noise terms
e(s) with weights f(t−s), where f is a deterministic impulse
response function. The noise terms e(s) are assumed to be
uncorrelated with mean zero and positive definite covariance
Re; let σ2 = tr(Re). Further, the impulse response function
f is assumed to satisfy f(0) = I and f(t) = 0 for t < 0.

Note that i.i.d. prediction noise can be recovered by im-
posing that f(0) = I and f(t) = 0 for all t 6= 0. Further, the
model can represent prediction errors that arise from clas-
sical filters such as Wiener filters and Kalman filters (see
[13]). In both cases the impulse response function decays as
f(s) ∼ ηs for some η < 1.

These examples highlight that the form of the impulse re-
sponse function captures the degree of short-term/long-term
correlation in prediction errors. The form of the correla-
tion structure plays a key role in the performance results we
prove, and its impact can be captured through the following
definition. For any k > 0, let ‖fk‖2 be the two norm square
of prediction error covariance over k steps of prediction, i.e.,

‖fk‖2 = tr(E[δykδy
T
k ]) = tr(Re

k∑
s=0

f(s)T f(s)), (3)

where δyTk = yt+k−yt+k|t =
∑t+k
s=t+1 f(t+k−s)e(s). Deriva-

tion of (3) can be found in Appendix B.1 Equation (19).

2.3 The competitive difference
For any algorithm ALG that comes up with feasible actions

xALG,t ∈ F,∀t, the cost of the algorithm over the horizon can
be written as

cost(ALG) =
T∑
t=1

h(xALG,t, yt) + β
∥∥xALG,t − xALG,t−1

∥∥ (4)

We compare the performance of our online algorithm against
the optimal offline algorithm OPT , which makes the optimal
decision with full knowledge of the trajectory of yt.

cost(OPT ) = min
xt∈F

T∑
t=1

h(xt, yt) + β ‖xt − xt−1‖ (5)

The results in this paper bound the competitive difference
of algorithms for OCO with switching costs and prediction
noise. Informally, the competitive difference is the additive

gap between the cost of the online algorithm and the cost of
the offline optimal.

To define the competitive difference formally in our setting
we need to first consider how to specify the instance. To do
this, let us first return to the specification of the prediction
model in (2) and expand the summation all the way to time
zero. This expansion highlights that the process yt can be
viewed as a random deviation around the predictions made
at time zero, yt|0 := ŷt, which are specified externally to the
model:

yt = ŷt +

t∑
s=1

f(t− s)e(s). (6)

Thus, an instance can be specified either via the process yt
or via the initial predictions ŷt, and then the random noise
from the model determines the other. The latter is preferable
for analysis, and thus we state our definition of competitive
difference (and our theorems) using this specification.

Definition 2. We say an online algorithm ALG has (ex-
pected) competitive difference at most ρ(T ) if:

sup
ŷ

Ee [cost(ALG)− cost(OPT )] ≤ ρ(T ). (7)

Note that the expectation in the definition above is with
respect to the prediction noise, (e(t))Tt=1, and so both terms
cost(ALG) and cost(OPT ) are random. Unlike ALG, the
offline optimal algorithm OPT knows each exact realization
of e before making the decision.

Importantly, though we specify our results in terms of the
competitive difference, it is straightforward to convert them
into results about the competitive ratio and regret, which are
more commonly studied in the OCO literature. Recall that
the competitive ratio bounds the ratio of the algorithm’s
cost to that of OPT, and the regret bounds the difference
between the algorithm’s cost and the offline static optimal.

Converting a result on the competitive difference into a
result on the competitive ratio requires lower bounding the
offline optimal cost, and such a bound can be found in The-
orem 6 of [32]. Similarly, converting a result on the com-
petitive difference into a result on the regret requires lower
bounding the offline static optimal cost, and such a bound
can be found in Theorem 2 of [13].

3. ALGORITHM DESIGN
There is a large literature studying algorithms for OCO,

both with the goal of designing algorithms with small regret
and algorithms with small competitive ratio.

These algorithms use a wide variety of techniques. For
example, there are numerous algorithms that maintain sub-
linear regret, e.g., online gradient descent (OGD) based al-
gorithms [52, 21] and Online Newton Step and Follow the
Approximate Leader algorithms [21]. (Note that the classical
setting does not consider switching costs; however, [4] shows
that similar regret bounds can be obtained when switching
costs are considered.) By contrast, there only exist algo-
rithms that achieve constant competitive ratio in limited
settings, e.g., [33] shows that, when F is a one-dimensional
normed space, there exists a deterministic online algorithm
that is 3-competitive. This is because, in general, obtain-
ing a constant competitive ratio is impossible in the worst-
case: [10] has shown that any deterministic algorithm must
be Ω(n)-competitive given metric decision space of size n
and [9] has shown that any randomized algorithm must be

Ω(
√

logn/ log logn)-competitive.
However, all of the algorithms and results described above

are in the worst-case setting and do not consider algorithms



that have noisy predictions available. Given noisy predic-
tions, the most natural family of algorithms to consider come
from the family of Model Predictive Control (MPC) algo-
rithms, which is a powerful, prominent class of algorithms
from the control community. In fact, the only analytic re-
sults for OCO problems with predictions to this point have
come from algorithms inspired by MPC, e.g., [8, 46, 30, 12].
(Note that there is a large literature on such algorithms in
control theory, e.g., [18, 37] and the references therein, but
the analysis needed for OCO is different than from the sta-
bility analysis provided by the control literature.)

To this point, two promising candidate algorithms have
emerged in the context of OCO: Receding Horizon Control
(RHC) [31] and Averaging Fixed Horizon Control (AFHC)
[32]. We discuss these two algorithms in Section 3.1 below
and then introduce our novel class of Committed Horizon
Control (CHC) algorithms, which includes both RHC and
AFHC as special cases, in Section 3.2. The class of CHC
algorithms is the focus of this paper.

3.1 Two promising algorithms
At this point the two most promising algorithms for in-

tegrating noisy predictions into solutions to OCO problems
are RHC and AFHC.

Receding Horizon Control (RHC): RHC operates by
determining, at each timestep t, the optimal actions over
the window (t + 1, t + w), given the starting state xt and a
prediction window (horizon) of length w.

To state this more formally, let y·|τ denote the vector
(yτ+1|τ , . . . , yτ+w|τ ), the prediction of y in a w timestep pre-

diction window at time τ . Define Xτ+1(xτ , y·|τ ) as the vector
in Fw indexed by t ∈ {τ+1, . . . , τ+w}, which is the solution
to

min
xτ+1,...,xτ+w

τ+w∑
t=τ+1

h(xt, yt|τ ) +

τ+w∑
t=τ+1

β ‖xt − xt−1‖ , (8)

subject to xt ∈ F.

Algorithm 1 (Receding Horizon Control). For all
t ≤ 0, set xRHC,t = 0. Then, at each timestep τ ≥ 0, set

xRHC,τ+1 = Xτ+1
τ+1 (xRHC,τ , y·|τ ) (9)

RHC has a long history in the control theory literature,
e.g., [8, 18, 37, 12]. However, there are few results known in
the OCO literature, and most such results are negative. In
particular, the competitive ratio of RHC with perfect looka-
head window w is 1+O(1/w) in the one-dimensional setting.
The performance is not so good in the general case. In par-
ticular, outside of the one-dimensional case the competitive
ration of RHC is 1 + Ω(1), i.e., the competitive ratio does
not decrease to 1 as the prediction window w increases in
the worst case [33].

Averaging Fixed Horizon Control (AFHC): AFHC
provides an interesting contrast to RHC. RHC ignores all his-
tory – the decisions and predictions that led it to be in the
current state – while AFHC constantly looks both backwards
and forwards. Specifically, AFHC averages the choices made
by Fixed Horizon Control (FHC) algorithms. In particular,
AFHC with prediction window size w averages the actions of
w FHC algorithms, each with different predictions available
to it. At time t, a FHC algorithm determines the optimal
actions xt+1, . . . , xt+w given a prediction window (horizon)
of length w as done in RHC. But, then FHC implements all
actions in the trajectory xt+1, . . . , xt+w instead of just the
first action xt. Fixed Horizon Control algorithms are individ-
ually more naive than RHC, but by averaging them AFHC
can provide improved worst-case performance compared to

RHC. To define the algorithm formally, let

Ωk = {i : i ≡ k mod w} ∩ [−w + 1, T ] for k = 0, . . . , w − 1.

Algorithm 2 (Fixed Horizon Control, version k).

FHC(k)(w), is defined in the following manner. For all

t ≤ 0, set x
(k)
FHC,t = 0. At timeslot τ ∈ Ωk (i.e., before

yτ+1 is revealed), for all t ∈ {τ + 1, . . . , τ + w}, use (8) to
set

x
(k)
FHC,t = Xτ+1

t

(
x

(k)
FHC,τ , y·|τ

)
. (10)

Note that, for k ≥ 1, the algorithm starts from τ = k − w
rather than τ = k in order to calculate x

(k)
FHC,t for t < k.

While individual FHC can have poor performance, sur-
prisingly, by averaging different versions of FHC we can ob-
tain an algorithm with good performance guarantee. Specif-
ically, AFHC is defined as follows.

Algorithm 3 (Averaging Fixed Horizon Control).

For all k, at each timeslot τ ∈ Ωk, use FHC(k) to determine

x
(k)
FHC,τ+1, . . ., x

(k)
FHC,τ+w, and for t = 1, . . . , T , set

xAFHC,t =
1

w

w−1∑
k=0

x
(k)
FHC,t. (11)

In contrast to RHC, AFHC has a competitive ratio of 1 +
O(1/w) regardless of the dimension of the action space in the
perfect lookahead model [32]1. This improvement of AFHC
over RHC is illustrated in Figure 1(a), which shows for a
specific setting with perfect lookahead, AFHC approaches
the offline optimal with increasing prediction window size
while RHC is relatively constant. (The setting used for the
figure uses a simple model of a data center with a multi-
dimensional action space, and is described in Appendix A.)

Comparing RHC and AFHC: Despite the fact that
the worst-case performance of AFHC is dramatically better
than RHC, RHC provides better performance than AFHC
in realistic settings when prediction can be inaccurate in the
lookahead window. For example, Figure 1(b) highlights that
RHC can outperform AFHC by an arbitrary amount if the
predictions are noisy. Specifically, if we make predictions
accurate for a small window γ and then inaccurate for the
remaining (w − γ) steps of the lookahead window, AFHC
is affected by the inaccurate predictions whereas RHC only
acts on the correct ones. The tradeoff between the worst-
case bounds and average-case performance across AFHC and
RHC is also evident in the results shown in Figure 3 of [32].

The contrast between Figure 1(a) and 1(b) highlights that,
at this point, it is unclear when one should use AFHC/RHC.
In particular, AFHC is more robust but RHC may be better
in many specific settings. Further, the bounds we have de-
scribed so far say nothing about the impact of noise on the
performance (and comparison) of these algorithms.

3.2 A general class of algorithms
The contrast between the performance of RHC and AFHC

in worst-case and practical settings is a consequence of the
fact that RHC is entirely “forward looking” while AFHC
keeps an “eye on the past”. However, both algorithms are
extreme cases in that RHC does not consider any informa-
tion that led it to its current state, while AFHC looks back
at w FHC algorithms – every set of predictions that led to
the current state.

1
Note that this result assumes that there exists e0 > 0, s.t. h(x, y) ≥
e0 · x, ∀x, y, and the switching cost is β · (xt − xt−1)

+ where (x)+ =
max(x, 0).
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Figure 1: Total cost of RHC and AFHC, normal-
ized by the cost of the offline optimal, versus: (a)
prediction window size, (b) number of steps of per-
fect prediction with w = 10. Note (a) and (b) were
produced under different cost settings, see Appendix
A.

One way to view this difference between RHC and AFHC
is in terms of commitment. In particular, AFHC has FHC
algorithms that commit to the w decisions at each timestep
and then the final choice of the algorithm balances these
commitments by averaging across them. In contrast, RHC
commits only one step at a time.

Building on this observation, we introduce the class of
Committed Horizon Control (CHC) algorithms in the fol-
lowing. The idea behind the class is to allow commitment
of a fixed number, say v, of steps. The minimal level of
commitment, v = 1, corresponds to RHC and the maximal
level of commitment, v = w, corresponds to AFHC. Thus,
the class of CHC algorithms allows variation between these
extremes.

Formally, to define the class of CHC algorithms we start
by generalizing the class of FHC algorithms to allow limited
commitment. An FHC algorithm with commitment level v
uses a prediction window of size w but then executes (com-
mits to) only the first v ∈ [1, w] actions which can be visu-
alized by Figure 2. To define this formally, let

Ψk = {i : i ≡ k mod v} ∩ [−v + 1, T ] for k = 0, . . . , v − 1.

Fixed horizon control with lookahead window w and com-
mitment level v, FHC(k)(v, w), is defined in the following

manner. For notational convenience, we write x(k) ≡ x(k)

FHC(v,w).

Algorithm 4 (FHC with Limited Commitment). For

all t ≤ 0, set x
(k)
FHC,t = 0. At timeslot τ ∈ Ψk (i.e., before

yτ+1 is revealed), for all t ∈ {τ + 1, . . . , τ +v}, use (8) to set

x
(k)
t = Xτ+1

t

(
x(k)
τ , y·|τ

)
. (12)

Note that, for k ≥ 1, the algorithm starts from τ = k − v
rather than τ = k in order to calculate x

(k)
t . We can see

that FHC with limited commitment is very similar to FHC
as both use (8) to plan w timesteps ahead, but here only the
first v steps are committed to action.
CHC(v, w), the CHC algorithm with prediction window

w and commitment level v, averages over v FHC algorithms
with prediction window w and commitment level v. Figure
3 provides an overview of CHC. For conciseness in the rest

of the paper, we will use x
(k)
t to denote the action decided

by FHC(k)(v, w) at time t.

Algorithm 5 (Committed Horizon Control). At each

timeslot τ ∈ Ψk, use FHC(k)(v, w) to determine x
(k)
τ+1, . . .,

... ...FHC  (v,w)
(k)

{ {v (w-v)

... ...

Figure 2: Fixed Horizon Control with commitment
level v: optimizes once every v timesteps for the next
w timesteps and commits to use the first v of them.

... ...

... ...

... ...

FHC  (v,w)
(1)

...

...

CHC

{ {v (w-v)

FHC  (v,w)
(2)

FHC  (v,w)
(v)

Figure 3: Committed Horizon Control: at each
timestep, it averages over all v actions defined by
the v FHC algorithms with limited commitment.

x
(k)
τ+v, and at timeslot t ∈ 1, ..., T , CHC(v, w) sets

xCHC,t =
1

v

v−1∑
k=0

x
(k)
t (13)

RHC and AFHC are the extreme levels of commitment in
CHC policies and, as we see in the analysis that follows, it
is often beneficial to use intermediate levels of commitment
depending on the structure of prediction noise.

4. AVERAGE-CASE ANALYSIS
We now present the main technical results of this paper,

which analyze the performance of CHC algorithms and ad-
dress several open challenges relating to the analysis of RHC
and AFHC. In this section we characterize the average case
performance of CHC as a function of the commitment level v
of the policy and properties of the prediction noise, i.e., the
variance of prediction noise e(s) and the form of the correla-
tion structure, f(s). Concentration bounds are discussed in
Section 5. All proofs are presented in Appendix B.

Our main result establishes bounds on the competitive dif-
ference of CHC under noisy predictions. Since CHC gen-
eralizes RHC and AFHC, our result also provides the first
analysis of RHC with noisy predictions and further enables
a comparison between RHC and AFHC based on the prop-
erties of the prediction noise.

Prior to this paper, only AFHC has been analyzed in the
case of OCO with noisy predictions [13]. Further, the anal-
ysis of AFHC in [13] depends delicately on the structure of
the algorithm and thus cannot be generalized to other poli-
cies, such as RHC. Our results here are made possible by a
novel analytic technique that transforms the control strat-
egy employed by OPT, one commitment length at a time, to
the control strategy employed by FHC(k)(v, w). At each in-

termediate step, we exploit the optimality of FHC(k)(v, w)
within the commitment length to bound the difference in
costs; the sum of these costs over the entire transformation
gives a bound on the difference in costs between OPT and



FHC(k)(v, w). We then exploit Jensen’s inequality to extend
this bound on competitive difference to CHC.

Theorem 1 below presents our main result characterizing
the performance of CHC algorithms under noisy predictions
for functions that are α-Hölder continuous in the second ar-
gument; in particular, α = 1 corresponds to the class of func-
tion that is Lipschitz continuous in the second argument.

Theorem 1. Assuming that the prediction error follows
(2), then for h that is α-Hölder continuous in the second
argument, we have

Ecost(CHC) ≤ Ecost(OPT ) +
2TβD

v
+

2GT

v

v−1∑
k=0

‖fk‖α .

(14)

Note that, while Theorem 1 is stated in terms of the compet-
itive difference, it can easily be converted into results about
the competitive ratio and regret as explained in Section 2.

There are two terms in the bound on the competitive dif-
ference of CHC: (i) The first term 2TβD

v
can be interpreted

as the price of switching costs due to limited commitment;
this term decreases as the commitment level v increases. (ii)

The second term 2GT
v

∑v−1
k=0 ‖fk‖

α represents the impact of
prediction noise on the competitive difference and can be
characterized by ‖fk‖ (defined in (3)), which is impacted
by both the variance of e(s) and the structural form of the
prediction noise correlation, f(s).

Theorem 1 allows us to immediately analyze the perfor-
mance of RHC and AFHC as they are special cases of CHC.
We present our results comparing the performance of RHC
and AFHC by analyzing how the optimal level of commit-
ment, v, depends on properties of the prediction noise.

In order to make concrete comparisons, it is useful to con-
sider specific forms of prediction noise. Here, we consider
four cases: (i) i.i.d. prediction noise, (ii) prediction noise with
long range correlation, (iii) prediction noise with short range
correlation, and (iv) prediction noise with exponentially de-
caying correlation. All four cases can be directly translated
to assumptions on the correlation structure, f(·). Recall that
many common predictors, e.g., Wiener and Kalman filters,
yield f that is exponentially decaying.

i.i.d. prediction noise. The assumption of i.i.d. predic-
tion noise is idealistic since it only happens when the forecast
for yt is optimal based on the information prior to time t for
all t = 1, . . . , T [22]. However, analysis of the i.i.d. noise is
instructive and provides a baseline for comparison with more
realistic models. In this case, Theorem 1 can be specialized
as follows. Recall that E[e(s)e(s)T ] = Re, and tr(Re) = σ2.

Corollary 2. Consider i.i.d. prediction error, i.e.,

f(s) =

{
I, s = 0

0, otherwise.

If h satisfies is α-Hölder continuous in the second argument,
then the expected competitive difference of CHC is upper
bounded by

Ecost(CHC) ≤Ecost(OPT ) +
2TβD

v
+ 2GTσα,

which is minimized when v∗ = w.

This can be proved by simply applying the form of f(s) to
(14). Corollary 2 highlights that, in the i.i.d. case, the level
of commitment that minimizes the competitive difference al-
ways coincides with the lookahead window w, independent
of all other parameters. This is intuitive since, when pre-
diction noise is i.i.d., increasing commitment level does not

increase the cost due to prediction errors. Combined with
the fact that increasing the commitment level decreases the
costs incurred by switching, we can conclude that AFHC is
optimal in the i.i.d. setting.

Long range correlation. In contrast to i.i.d. predic-
tion noise, another extreme case is when prediction noise
has strong correlation over a long period of time. This is
pessimistic and happens when past prediction noise has far-
reaching effects on the prediction errors in the future, i.e., the
current prediction error is sensitive to errors in the distant
past. In this case, prediction only offers limited value since
prediction errors accumulate. For long range correlation, we
can apply Theorem 1 as follows.

Corollary 3. Consider prediction errors with long range
correlation such that

‖f(s)‖F =

{
c, s ≤ L
0, s > L,

where L > w. If h is α-Hölder continuous in the second ar-
gument, the expected competitive difference of CHC is upper
bounded by

Ecost(CHC)− Ecost(OPT ) ≤ 2TβD(α+ 2)− 4GTcασα

α+ 2
v−1

+
23+α

2 GTcασα

α+ 2
vα/2.

If βD
Gcασα

> α(2w)1+α
2 + 2, then v∗ = w; if βD

Gcασα
< 2

α+2
,

then v∗ = 1, otherwise v∗ is in between 1 and w.

Corollary 3 highlights that, in the case of long range correla-
tion, the level of commitment that minimizes the competitive
difference depends on the variance σ2, the switching cost β,
the smoothness G (α), and the diameter of the action space
D.

The term βD
Gcασα

can be interpreted as a measure of the
relative importance of the switching cost and the prediction
loss. If βD

Gcασα
= 2

α+2
∈ O(1), i.e., the one step loss due

to prediction error is on the order of the switching cost,
then v∗ = 1 and RHC optimizes the performance bound;
if βD
Gcασα

= α(2w)1+α
2 + 2 ∈ Ω(w), then v∗ = w and AFHC

optimizes the performance bound. Otherwise, v∗ ∈ (1, w).
We illustrate these results in Figure 4(a) which plots the

competitive difference as a function of the commitment level
for various parameter values. The case for the dashed line
satisfies βD

Gcασα
> α(2w)1+α

2 + 2 and shows competitive dif-
ference decreases with increasing levels of commitment. Here,
the window size is 100, and thus AFHC minimizes the com-
petitive difference, validating Corollary 3. The dot-dashed
line satisfies βD

Gcασα
< 2

α+2
and shows the increase in com-

petitive difference with commitment, highlighting that RHC
is optimal. The solid line does not satisfy either of these
conditions and depicts the minimization of competitive dif-
ference at intermediate levels of commitment (marked with
a circle). Figure 4(b) illustrates the relationship between α
and the optimal commitment level v∗ (marked with a circle
that corresponds to the same v∗ as in Figure 4(a)). As α
increases, the prediction loss increases, and thus the optimal
commitment level decreases to allow for updated predictions.

Short range correlation. Long range correlation is clearly
pessimistic as it assumes that the prediction noise is always
correlated within the lookahead window. Here, we study an-
other case where prediction noise can be correlated, but only
within a small interval that is less than the lookahead win-
dow w. This is representative of scenarios where only limited
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Figure 4: Illustration of Corollary 3, for long range
dependencies. (a) shows the time averaged expected
competitive difference as a function of the commit-
ment level, and (b) shows the optimal commitment
level as a function of α.

past prediction noises affect the current prediction. For such
short range correlation, Theorem 1 gives us:

Corollary 4. Consider prediction errors with short range
correlation such that

‖f(s)‖F =

{
c, s ≤ L
0, s > L,

where L ≤ w. If h is α-Hölder continuous in the second ar-
gument, the expected competitive difference of CHC is upper
bounded by:

if v > L

Ecost(CHC)− Ecost(OPT ) ≤ 2TβD

v
+ 2GT (cσ)α(L+ 1)α/2

− 2GT

v

(cσ)α

α+ 2
((L+ 1)α/2(αL− 2) + 1);

if v ≤ L

Ecost(CHC)− Ecost(OPT ) ≤ 2TβD

v

+
4GTcασα

v(α+ 2)
((v + 1)(α+2)/2 − 1).

If βD
Gcασα

> H(L), where H(L) = 1
α+2

(
(L + 1)α/2(αL −

2) + 1
)
, then v∗ = w; if βD

Gcασα
< min(H(L), 2

α+2
), then

v∗ = 1, otherwise v∗ is in between 1 and w.

Corollary 4 shows that the structure of the bound on the
competitive difference itself depends on the relative values of
v and L. In terms of the optimal commitment level, Corol-
lary 4 shows that, similar to Corollary 3, the term βD

Gcασα

comes into play again; however, unlike Corollary 3 (where
L > w), the optimal commitment level now also depends
on the length of the interval, L, within which prediction er-
rors are correlated. Note that H(L) is increasing in L. If
βD

Gcασα
> H(L), i.e., the prediction loss and the length of the

correlated prediction error interval are small compared to
the switching cost, then v∗ = w and thus AFHC optimizes
the performance bound. On the other hand, if the predic-
tion loss and L are large compared to the switching cost,
then v∗ = 1, and thus RHC optimizes the bound; otherwise,
v∗ lies is between 1 and w, and thus intermediate levels of
commitment under CHC perform better than AFHC and
RHC.

Note that when prediction noise is i.i.d., we have L = 0
and H(L) < 0; hence we have βD

Gcασα
> H(L) and thus

v∗ = w, which corresponds to the conclusion of Corollary 2.
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Figure 5: Illustration of Corollary 4, for short range
correlations. (a) shows the time averaged expected
competitive difference as a function of the commit-
ment level, and (b) shows the optimal commitment
level as a function of α.

We illustrate these results in Figure 5(a), which plots the
competitive difference as a function of the commitment for
various parameter values. The dashed line satisfies βD

Gcασα
>

H(L) and shows the drop in competitive difference with
increasing levels of commitment. The competitive differ-
ence is lowest when the commitment level is 100, which
is also the window size, thus validating the optimality of
AFHC as per Corollary 4. The dot-dashed line satisfies
βD
Gcσ

< min(H(L), 2
α+2

) and shows the increase in competi-
tive difference with commitment, highlighting that RHC is
optimal. The solid line does not satisfy either of these con-
ditions and depicts the minimization of competitive differ-
ence at intermediate levels of commitment. Figure 5(b) il-
lustrates the relationship between α and the optimal com-
mitment level v∗. As α increases, loss due to prediction noise
increases; as a result, v∗ decreases.

Exponentially decaying correlation. Exponentially
decaying correlation is perhaps the most commonly observed
model in practice and is representative of predictions made
via Wiener [47] or Kalman [27] filters. For clarity of illus-
tration we consider the case of α = 1 here. In this case,
Theorem 1 results in the following corollary.

Corollary 5. Consider prediction errors with exponen-
tially decaying correlation, i.e., there exists a < 1, such that

‖f(s)‖F =

{
cas, s ≥ 0

0, s < 0.

If h is 1-Hölder continuous, then the expected competitive
difference of CHC is upper bounded by

Ecost(CHC)− Ecost(OPT ) ≤ 2TβD

v
+

2GTcσ

1− a2

− a2(1− a2v)GTcσ

v(1− a2)2
.

When βD
Gcσ

≥ a2

2(1−a2)
the commitment that minimizes the

performance bound is v∗ = w, i.e., AFHC minimizes the

performance bound. When βD
Gcσ

< a2

2(1+a)
, v∗ = 1, i.e., RHC

minimizes the performance bound.

Corollary 5 shows that when the prediction noise σ and
the correlation decay parameter a are small, the loss due to
switching costs is dominant, and thus commitment is valu-
able; on the other hand, when σ and a are large, then the
loss due to inaccurate predictions is dominant, and thus a
smaller commitment is preferable to exploit more updated
predictions.
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Figure 6: Illustration of Corollary 5, for exponen-
tially decaying correlations. (a) shows the time av-
eraged expected competitive difference as a function
of the commitment level, and (b) shows the optimal
commitment level as a function of the decay param-
eter, a.

We illustrate these results in Figure 6(a), which plots the
competitive difference as a function of the commitment for
various parameter values. The dashed line satisfies βD

Gcσ
>

a2

2(1−a2)
and shows the drop in competitive difference with

increasing levels of commitment. The competitive difference
is lowest when the commitment level is 100, which is also
the window size, thus validating the optimality of AFHC as

per Corollary 5. The dot-dashed line satisfies βD
Gcσ

> a2

2(1+a)

and shows the increase in competitive difference with com-
mitment, highlighting that RHC is optimal. The solid line
does not satisfy either of these conditions and depicts the
minimization of competitive difference at intermediate lev-
els of commitment. Figure 6(b) illustrates the relationship
between a and the optimal commitment level v∗. As a in-
creases, correlation decays more slowly, and thus the loss
due to prediction noise becomes dominant; as a result, v∗

decreases.
Strong convexity. All of our results to this point depend

on the diameter of the action space D. While this depen-
dence is common in OCO problems, e.g., [52, 26], it is not
desirable.

Our last result in this section highlights that it is possi-
ble to eliminate the dependence on D by making a stronger
structural assumption on h – strong convexity. In particu-
lar, we say that h(·) is m−strongly convex in the first argu-
ment with respect to the norm of the switching cost ‖·‖ if
∀x1, x2, y,

h(x1, y)−h(x2, y) ≥ 〈∂xh(x2, y) · (x1−x2)〉+ m

2
‖x1 − x2‖2 .

Under the assumption of strong convexity, we obtain the
following bound.

Theorem 6. If h is m-strongly convex in the first argu-
ment with respect to ‖·‖ and α-Hölder continuous in the sec-
ond argument, we have

Ecost(CHC)− Ecost(OPT ) ≤ 2β2T

mv
+ 2GT

v−1∑
k=0

‖fk‖α .

Theorem 6 is useful when the diameter of the feasible set
D is large or unbounded; when D is small, we can apply
Theorem 1 instead. As above, it is straightforward to apply
the techniques in Corollaries 2 – 5 to compute v∗ for strongly
convex h under different types of prediction noise2.

2
We only need to change βD with β2/m in the bounds of the corol-

laries to draw parallel conclusions.

5. CONCENTRATION BOUNDS
Our results to this point have focused on the performance

of CHC algorithms in expectation. In this section, we es-
tablish bounds on the distribution of costs under CHC algo-
rithms. In particular, we prove that, under a mild additional
assumption, the likelihood of cost exceeding the average case
bounds proven in Section 4 decays exponentially.

For simplicity of presentation, we state and prove the con-
centration result for CHC when the online parameter y is
one-dimensional. In this case, Re = σ2, and the correlation
function f : N → R is a scalar valued function. The results
can be generalized to the multi-dimensional setting at the
expense of considerable notational complexity in the proofs.

Additionally, for simplicity of presentation we assume (for
this section only) that {e(t)}Tt=1 are uniformly bounded, i.e.,
∃ε > 0, s.t. ∀t, |e(t)| < ε. Note that, with additional effort,
the boundedness assumption can be relaxed to the case of
e(t) being subgaussian, i.e., E[exp(e(t)2/ε2)] ≤ 2, for some
ε > 0.3

Given {ŷt}Tt=1, the competitive difference of CHC is a ran-
dom variable that is a function of the prediction error e(t).
To state our concentration results formally, let V1T be the
upper bound of the expected competitive difference of CHC
in (14), i.e., V1T = 2TβD

v
+ 2GT

v

∑v
k=1 ‖fk‖

α.

Theorem 7. Assuming that the prediction error follows
(2), and h is α-Hölder continuous in the second argument,
we have

P(cost(CHC)− cost(OPT ) > V1T + u)

≤ exp

(
−u2α2

21+2αG2ε2TF (v)

)
,

for any u > 0, where F (v) =
(

1
v

∑v−1
k=0(v − k)α|f(k)|α

)2
.

This result shows that the competitive difference has a
sub-Gaussian tail, which decays much faster than the nor-
mal large deviation bounds obtained by bounding moments,
i.e., Markov Inequality, the rate of decay is dependent on the
sensitivity of h to disturbance in the second argument (G,α),
the size of variation (ε), and the correlation structure (F (v)).
This is illustrated in Figure 7, where we show the distribu-
tion of the competitive difference of CHC under different
prediction noise correlation assumptions. We can see that,
for prediction noise that decays fast (i.i.d. and exponentially
decaying noise with small a) in Figure 7(a), the distribution
is tightly concentrated around the mean, whereas for predic-
tion noise that are fully correlated (short range correlation
and long range correlation) in Figure 7(b), the distribution
is more spread out.

If we consider the time-averaged competitive difference, or
the regret against the offline optimal, we can equivalently
state Theorem 7 as follows.

Corollary 8. Assuming that the prediction error follows
(2), and h is α-Hölder continuous, the probability that the
regret of CHC against the offline optimal exceeds V1 can be
bounded by

P
(

1

T
[cost(CHC)− cost(OPT )] > V1 + u

)
≤ exp

(
−u2

21+2αG2ε2αF (v)/T

)
,

3
This involves more computation and worse constants in the concen-

tration bounds. Interested readers are referred to Theorem 12 and
the following remark of [11] for a way to generalize the concentration
bound.
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Figure 7: The cumulative distribution function
and average-case bounds under different correlation
structures: (a) i.i.d prediction noise; exponentially
decaying, a = 2/3; (b) long range; short range, L = 4.
Competitive differences simulated with random re-
alization of standard normal e(t) 1000 times under
the following parameter values: T = 100, v = 10, βD =
1, G = 0.1, α = 1, c = 1.

where F (v) =
(

1
v

∑v−1
k=0(v − k)|f(k)|α

)2
. Assuming f(s) ≤

C for s = 0, . . . , v, then limT→∞ F (v)/T = 0 if either v ∈
O(1), or f(s) ≤ cηs for some η < 1.

Corollary 8 shows that, when either the commitment level
v is constant, or the correlation f(s) is exponentially decay-
ing, the parameter of concentration F (v)/T for the regret of
CHC tends to 0. The full proof is given in Appendix B.6.
To prove this result on the concentration of the competitive
difference, we make heavy use of the fact that h is α-Hölder
continuous in the second argument, which implies that the
competitive difference is α-Hölder continuous in e. This al-
lows application of the method of bounded difference, i.e.,
we bound the difference of V (e) where one component of e
is replaced by an identically-distributed copy. More specif-
ically, we use the following lemma, the one-sided version of
one due to McDiarmid:

Lemma 9 ([38], Lemma 1.2). Let X = (X1, . . . , Xn) be
independent random variables and Y be the random variable
f(X1, . . . , Xn), where function f satisfies

|f(x)− f(x′k)| ≤ ck
whenever x and x′k differ in the kth coordinate. Then for
any t > 0,

P(Y − EY > t) ≤ exp

(
−2t2∑n
k=1 c

2
k

)
.

6. CONCLUDING REMARKS
OCO problems with switching costs and noisy predictions

are widely applicable in networking and distributed systems.
Prior efforts in this area have resulted in two promising algo-
rithms – RHC and AFHC. Unfortunately, it is not obvious
when each algorithm should be used. Further, thus far, only
AFHC has been analyzed in the presence of noisy predic-
tions, despite the fact that RHC is seemingly more resistant
to prediction noise in many settings.

In this paper, we provide the first analysis of RHC with
noisy predictions. This novel analysis is made possible by the
introduction of our new class of online algorithms, CHC, that
allows for arbitrary levels of commitment, thus generalizing
RHC and AFHC. Our analysis of CHC provides explicit re-
sults characterizing the optimal commitment level as a func-
tion of the variance and correlation structure of the predic-
tion noise. In doing so, we characterize when RHC/AFHC

is better depending on the properties of the prediction noise,
thus addressing an important open challenge in OCO.

Our focus in this paper has been on the theoretical anal-
ysis of CHC and its implications for RHC and AFHC. The
superiority of CHC suggests that it is a promising approach
for integrating predictions into the design of systems, espe-
cially those that operate in uncertain environments. Going
forward, it will be important to evaluate the performance
of CHC algorithms in settings where RHC and AFHC have
been employed, such as dynamic capacity provisioning, geo-
graphical load balancing, and video streaming.
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APPENDIX
A. EXPERIMENTAL SETUP FOR FIG. 1

Setting for Figure 1(a): This example corresponds to
a simple model of a data center. There are (w + 1) types of
jobs and (w + 2) types of servers available to process these
jobs. Each server has a different linear cost {a(t), b, c : 0 <
a(t) < b < c} (low, medium, high respectively) depending
on the job type. The low cost is a monotonically increasing
function of time that asymptotically approaches the constant
medium cost (i.e. a(t) = α+ (b− α) t−1

t
, where 0 < α < b).

The switching cost β only applies when a server is turned
on (shut down costs can be included in the turning on cost)
and has a magnitude greater than the difference between
the medium and low costs (i.e. β > b− α). The high cost is
constant but greater than the difference between the medium
and low costs multiplied by the prediction window size plus
the switching cost. (i.e. c > (b−α)w+β). One special server
(server 0) can process all jobs with medium cost. Label all
other servers 1 through (w + 1) and all job types 1 through
(w + 1). Let server s ∈ {1, ..., w + 1} be able to process job
type s with low cost, job type s − 1 with high cost, and all



other job types with medium cost.
We assume perfect prediction within the prediction win-

dow, w.
The trace that forms Figure 1(a), is one in which the whole

work load is only with one job type at each timestep starting
with job type 1 and sequentially cycles through all job types
every (w + 1) timesteps.

This forces RHC to switch every timestep and FHC to
switch every w timesteps to avoid a future high cost but
take advantage of a low cost at the current timestep.

The offline optimal puts all of the workload on server 0
that processes all jobs with medium cost and so never incurs
a switching cost after the first timestep.

RHC and AFHC try to take advantage of the low cost
but the trace tricks them with a high cost one timestep be-
yond the prediction window. Switching to server 0 is always
slightly too expensive by (b−α) 1

t
within the prediction win-

dow. The values used in Figure 1(a) are as follows: cycling
workload of size 1 for 100 timesteps, α = 0.9, b = 1, β = 2,
c = 0.1(w + 1) + 3.

Setting for Figure 1(b): Similar to Figure 1(a), the
setting in which this example was constructed corresponds
to a simple model of a data center. The key difference is that
predictions are noisy. There are (w + 1) types of jobs and
(w+ 1) types of servers available to process these jobs. Each
server has a different linear cost {a, c : 0 < a < c} (low, high
respectively) depending on the job type. The switching cost
β only applies when a server is turned on (shut down costs
can be included in the turning on cost) and has a magnitude
less than the difference between the high and low cost (i.e.
β < c − a). Label all servers 1 through (w + 1) and all job
types 1 through (w+ 1). Let server s ∈ {1, ..., w+ 1} be able
to process job type s with low cost, and all other job types
with high cost.

We assume perfect prediction within only the first γ timesteps
of the prediction window, w. The trace that forms Figure
1(b), is one in which the whole work load is only with one job
type at each timestep starting with job type 1 and sequen-
tially cycles through all job types every (w + 1) timesteps.
Error in the last w−γ timesteps of the prediction window is
produced by making those predictions be equal to the pre-
diction of the last perfect prediction (i.e. the γ-th timestep
within the prediction window).

RHC equals the offline optimal solution in this setting
which is to switch the whole workload at every timestep to
the server with the unique low cost. AFHC on the other hand
puts (w−γ)/w of the workload on servers with high cost and
only γ/w of the workload on the server with the unique low
cost. The values used in Figure 1(b) are as follows: cycling
workload of size 1 for 30 timesteps, a = 1, c = 6, β = 0.1.

B. PROOF OF ANALYTIC RESULTS
We first introduce some additional notation used in the

proofs. For brevity, for any vector x we write xi..j = (xi, . . . , xj)
for any i ≤ j. Let x∗ denote the offline optimal solution to
(5), and let the cost of an online algorithm during time pe-
riod [t1, t2] with boundary conditions xS , xE and with online
data yt1..t2 be

gt1,t2(x;xS ;xE ; y) =

t2∑
t=t1

h(xt, yt) + β ‖xS , xt1‖

+

t2∑
t=t1+1

β ‖xt−1, xt‖+ β ‖xt2 , xE‖ .

If xE is omitted, then by convention xE = xt2 (and thus
β ‖xt2 − xE‖ = 0). If xS is omitted, then by convention xS =

xt1−1. Note that gt1,t2(x) depends only on xi for t1 − 1 ≤
i ≤ t2.

B.1 Proof of Theorem 1
To characterize the suboptimality of CHC in the stochas-

tic case, we first analyze the competitive difference of fixed
horizon control with commitment level v, FHCk(v). With-
out loss of generality, assume that k = 0. Subsequently
we omit k and v in FHC for simplicity. Construct a se-
quence of T-tuples (ξ1, ξ2, . . . , ξM1), where M1 = #{t ∈
[1, T ] | t mod v = 1} ≤ dT/ve, such that ξ1 = x∗ is the
offline optimal solution, and ξτt = xFHC,t for all t < τv + 1
hence, ξM1 = xFHC . At stage τ , to calculate ξτ+1, apply
FHC to get (x̃τv+1, . . . , x̃τv+w) = Xτ (ξττv, y·|τv), and replace

ξττv+1:(τ+1)v with x̃τv+1:(τ+1)v to get ξτ+1, i.e.,

ξτ+1 = (ξτ1 , . . . , ξ
τ
τv, x̃τv+1, . . . , x̃

τ
(τ+1)v, ξ

τ
(τ+1)v+1, . . . , ξ

τ
T ).

By examining the terms in ξτ and ξτ+1, we have

g1,T (ξτ+1; y)− g1,T (ξτ ; y)

=− β
∥∥∥x∗(τ+1)v+1 − x

∗
(τ+1)v

∥∥∥+ β
∥∥∥x∗(τ+1)v+1 − x̃(τ+1)v

∥∥∥
− β

∥∥x∗τv+1 − ξττv
∥∥+ β ‖x̃τv+1 − ξττv‖

−
(τ+1)v∑
t=τv+1

(
h(x∗t , yt) + β

∥∥x∗t − x∗t−1

∥∥)

+

(τ+1)v∑
t=τv+1

(h(x̃t, yt) + β ‖x̃t − x̃t−1‖) (15)

By construction of (x̃τv+1, . . . , x̃(τ+1)v), it is the optimal
solution for gτv+1,(τ+1)v(x; ξττv; x̃(τ+1)v+1; y·|τ ), hence

(τ+1)v∑
t=τv+1

(
h(x̃t, yt|τv) + β ‖x̃t − x̃t−1‖

)
+ β ‖x̃τv+1 − ξττv‖+ β

∥∥x̃(τ+1)v+1 − x̃(τ+1)v

∥∥
≤

(τ+1)v∑
t=τv+1

(
h(x∗t , yt|τv) + β

∥∥x∗t − x∗t−1

∥∥)
+ β

∥∥x∗τv+1 − ξττv
∥∥+ β

∥∥∥x̃(τ+1)v+1 − x∗(τ+1)v

∥∥∥ ,
Substituting the above inequality into (15) and by triangle

inequality, we have

g1,T (ξτ+1; y)− g1,T (ξτ ; y)

≤2β
∥∥∥x∗(τ+1)v+1 − x̃(τ+1)v+1

∥∥∥+

(τ+1)v∑
t=τv+1

|h(x∗t , yt|τv)− h(x∗t , yt)|

+

(τ+1)v∑
t=τv+1

|h(x̃t, yt)− h(x̃t, yt|τv)|

≤2βD + 2G

(τ+1)v∑
t=τv+1

∥∥yt − yt|τv∥∥α2 , (16)

Summing these inequalities from τ = 0 to τ = M1 and
noting that ξM1 = xFHC1(v) and ξ1 = x∗, we have

cost(FHC1(v)) ≤cost(OPT ) + 2M1βD + 2G

M1∑
τ=0

(τ+1)v∑
t=τv+1

∥∥yt − yt|τv∥∥α2
=cost(OPT ) + 2M1βD + 2G

T∑
t=1

∥∥∥yt − yt|t−φ1(t)

∥∥∥α
2
.

(17)



where φk(t) = arg minu∈Ψk,u≤t |t− u|. For k = 1, φ1(t) = u
whenever u = τv and t ∈ [u, u+ v − 1] for some τ . We only
have M1 terms of the switching cost

∥∥x∗(τ+1)v+1 − x̃(τ+1)v+1

∥∥
since (M1 + 1)v + 1 > T . By the same argument, we have

cost(FHCk(v)) ≤ cost(OPT ) + 2MkβD + 2G
T∑
t=1

∥∥∥yt − yt|φk(t)

∥∥∥α
2

Recall that xCHC,t = 1
v

∑v
k=1 x

(k,v)
FHC,t, by convexity of the

cost function and Jensen’s inequality, we have

cost(CHC) ≤
1

v

v−1∑
k=0

cost(FHCk(v))

≤cost(OPT ) +
2
∑v−1
k=0 MkβD

v
+

2G

v

T∑
t=1

v−1∑
k=0

∥∥∥yt − yt|t−φk(t)

∥∥∥α
2

≤cost(OPT ) +
2TβD

v
+

2G

v

T∑
t=1

v−1∑
k=0

∥∥∥yt − yt|t−φk(t)

∥∥∥α
2

≤cost(OPT ) +
2TβD

v
+

2G

v

T∑
t=1

v−1∑
k=0

∥∥yt − yt|t−(k+1)

∥∥α
2
. (18)

where the third inequality is because
∑v−1
k=0 Mk = T since

by definition Mk is the number of elements in [1, T ] that
is congruent to k modulus v; and the fourth inequality is
because for all t, t− φk(t) always range from 1 to v when k
goes from 0 to v − 1.

Finally, we show that E
∥∥yτ − yτ |τ−(k+1)

∥∥α
2
≤ ‖fk‖α to

finish the proof. Note that for α = 2, by (2), we have

E
∥∥yτ − yτ |τ−(k+1)

∥∥2

2
= E

∥∥∥∥∥∥
τ∑

s=τ−k
f(τ − s)e(s)

∥∥∥∥∥∥
2

2

=Etr

 k∑
s1,s2=0

e(τ − s1)T f(s1)T f(s2)e(τ − s2)


=tr

 k∑
s1,s2=0

f(s1)T f(s2)Ee(τ − s2)e(τ − s1)T


=tr

(
Re

k∑
s=0

f(s)T f(s)

)
= ‖fk‖2 , (19)

where the second equality is due to cyclic invariance of trace
and linearity of expectation, and third equality is due to the
fact that e(s) are uncorrelated. When α ≤ 2, F (x) = xα/2

is a concave function, hence by Jensen’s inequality,

E
∥∥yτ − yτ |τ−(k+1)

∥∥α
2

= EF (
∥∥yτ − yτ |τ−(k+1)

∥∥2

2
)

≤F (E
∥∥yτ − yτ |τ−(k+1)

∥∥2

2
) = ‖fk‖α .

B.2 Proof of Corollary 3
Taking expectation over the prediction error and assuming

long range correlation, we have for all k ≤ v ≤ w

‖fk‖2 =

k∑
s=0

tr(Ref(s)T f(s)) =

k∑
s=0

〈R1/2
e , f(s)〉2

≤
k∑
s=0

(
∥∥∥R1/2

e

∥∥∥
F
‖f(s)‖F )2 = (k + 1)c2σ2,

where the inequality is due to Cauchy-Schwarz and ‖fk‖ =√
k + 1cσ. To compute competitive difference of CHC, note

that

v−1∑
k=0

‖fk‖α =

v−1∑
k=0

(
√
k + 1cσ)α ≤ cασα

∫ v+1

1

kα/2dk

=
2cασα

α+ 2
((v + 1)

α+2
2 − 1). (20)

Thus, by Theorem 1,

Ecost(CHC)− Ecost(OPT ) ≤
2TβD

v
+

2GT

v

v−1∑
k=0

(
√
k + 1cσ)α

≤
2TβD

v
+

4GTcασα

v(α+ 2)
((v + 1)1+α/2 − 1)

=
2TβD(α+ 2)− 4GTcασα

α+ 2
v−1 +

4GTcασα

α+ 2
vα/2

(
v + 1

v

)1+α/2

≤
2TβD(α+ 2)− 4GTcασα

α+ 2
v−1 +

23+α
2 GTcασα

α+ 2
vα/2,

where the last inequality is because (v+ 1)/v ≤ 2 for v ≥ 1.

If βD(α + 2) ≤ 2Gcασα, which implies βD
Gcασα

≤ 2
α+2

, then
the right hand side is an increasing function of v, hence the
commitment level that minimizes the performance guarantee
is v∗ = 1.

On the other hand, if βD(α + 2) > 2Gcασα, then let

A = βD(α+2)−2Gcασα

α+2
, B = 22+α/2Gcασα

α+2
, then the right hand

side is F (v) = 2T (Av−1 + Bvα/2), by examining the gradi-

ent F ′(v) = 2T (−Av−2 + α
2
Bv−(1−α/2)), since F ′(v) > 0 iff

v2F ′(v) > 0 and v2F ′(v) is an increasing function in v, we

can see that when v < ( 2A
αB

)2/(α+2), F (v)′ < 0 and F (v) is

a decreasing function, when v > ( 2A
αB

)2/(α+2), F (v)′ > 0 and

F (v) is an increasing function, hence when v = ( 2A
αB

)2/(α+2),
F (v)′ = 0 is the global minimum point of F (v).

Therefore, when
(

2A
αB

)2/(α+2) ≥ w, we have v∗ = w, this

happens when βD
Gcασα

> α(2w)1+α
2 + 2. When βD

Gcασα
∈(

2
α+2

, α(2w)1+α
2 + 2

)
, v∗ is between 1 to w, in this case,

v∗ =
(
βD(α+2)−2Gcασα

22+α/2αGcασα

)2/(α+2)

.

B.3 Proof of Corollary 4
Taking expectation over the prediction error, when k < L,

similar to the proof of Corollary 3, ‖fk‖2 ≤ (k + 1)c2σ2.

When k ≥ L, ‖fk‖2 ≤ (L+ 1)c2σ2. Hence if v > L, we have

v−1∑
k=0

‖fk‖α =

L−1∑
k=0

‖fk‖α +

v−1∑
k=L

‖fk‖α

≤2(cσ)α

α+ 2
((L+ 1)

α+2
2 − 1) + (v − L)(cσ)α(L+ 1)α/2

=v(cσ)α(L+ 1)α/2

+
(cσ)α

α+ 2

(
(L+ 1)α/2(2(L+ 1)− (α+ 2)L)− 1

)
=v(cσ)α(L+ 1)α/2

− (cσ)α

α+ 2

(
(L+ 1)α/2(αL− 2) + 1

)
,



where the first inequality if by (20). Hence, by Theorem 1,

Ecost(CHC)− Ecost(OPT ) ≤ 2TβD

v
+

2GT

v

v−1∑
k=0

‖fk‖α

≤2TβD

v
+ 2GT (cσ)α(L+ 1)α/2

− 2GT

v

(cσ)α

α+ 2
((L+ 1)α/2(αL− 2) + 1)

The right hand side can be written as 2T (A−B
v

+ C), where

A = βD,B = G(cσ)αH(L), C = G(cσ)α(L + 1)α/2 and

H(L) = 1
α+2

(
(L+ 1)

α
2 (αL− 2) + 1

)
. When A > B, then

the right hand side is a decreasing function in v, hence v∗ =
w; this happens when βD

Gcασα
> H(L). When A < B, then

the right hand side is an increasing function in v, hence we
want v∗ to be small, i.e., v ≤ L, this happens when βD

Gcασα
<

H(L). When v ≤ L,
∑v−1
k=0 ‖fk‖

α ≤ 2(cσ)α

α+2
((v + 1)1+α

2 − 1),
hence

Ecost(CHC)− Ecost(OPT ) ≤ 2TβD

v
+

2GT

v

v−1∑
k=0

‖fk‖α

≤2TβD(α+ 2)− 4GTcασα

v(α+ 2)
+

4GT (cσ)α

v(α+ 2)
((v + 1)1+α/2)

If βD
Gcασα

≤ 2
α+2

, then the right hand side is an increasing

function in v, hence v∗ = 1.

B.4 Proof of Corollary 5
Taking expectation over the prediction error, assuming

that there exists a < 1, such that for all s, ‖f(s)‖F ≤ cas,
we have

‖fk‖2 =

k∑
s=0

tr(Ref(s)T f(s)) =

k∑
s=0

〈R1/2
e , f(s)〉2

≤
k∑
s=0

(
∥∥∥R1/2

e

∥∥∥
F
‖f(s)‖F )2 =

k∑
s=0

c2σ2a2s = c2σ2 1− a2k

1− a2
,

where the inequality is due to Cauchy-Schwarz, hence for h
that is G-Lipschitz in the second argument, we have ‖fk‖ ≤
cσ(1−a2(k+1)/2)

1−a2 , where the inequality is because
√

1− a2 ≥
(1 − a2), and 1 − a2(k+1) ≤ 1 − a2(k+1) + a4(k+1)/4 = (1 −
a2(k+1)/2)2, hence,

Ecost(CHC)− Ecost(OPT )

≤2TβD

v
+

2GT

v

v−1∑
k=0

cσ(1− a2(k+1)/2)

1− a2

≤2TβD

v
+

2GTcσ

1− a2
− GTcσ

v(1− a2)

v∑
k=1

a2k

≤2TβD

v
+

2GTcσ

1− a2
− GTcσ

v(1− a2)

a2(1− a2v)

1− a2
.

Let A = 2TβD, B = a2GTcσ
1−a2 and C = 2GTcσ

1−a2 , then

Ecost(CHC)− Ecost(OPT ) ≤ A

v
− B(1− a2v)

v
+ C

=
(A−B) +Ba2v

v
+ C.

Hence when A ≥ B, then (A−B) +Ba2v > 0, and the right
hand side is a decreasing function in v, hence v∗ = w, and

this happens when 2TβD ≥ a2GTcσ
1−a2 which implies βD

Gcσ
≥

a2

2(1−a2)
.

On the other hand, if A < B−Ba, then (A−B)+Ba2v ≤
A − B + Ba < 0, and the right hand side is an increasing
function in v, hence v∗ = 1, and this happens when 2TβD <
a2GTcσ

1−a2 (1− a), which implies 2βD
Gcσ
≤ a2

2(1+a)

B.5 Proof of Theorem 6
The proof follows in the same fashion as that of Theorem

1. Recall that we have

g1,T (ξτ+1; y)− g1,T (ξτ ; y)

≤2β
∥∥∥x∗(τ+1)v+1 − x̃(τ+1)v+1

∥∥∥+

(τ+1)v∑
t=τv+1

|h(x∗t , yt|τv)− h(x∗t , yt)|

+

(τ+1)v∑
t=τv+1

|h(x̃t, yt)− h(x̃t, yt|τv)|

≤2β
∥∥∥x∗(τ+1)v+1 − x̃(τ+1)v+1

∥∥∥+ 2G

(τ+1)v∑
t=τv+1

∥∥yt − yt|τv∥∥α2 , (21)

Since h ism-strongly convex, gτv+1,(τ+1)v is alsom-strongly
convex, hence

gτv+1,(τ+1)v(x̃τv+1:(τ+1)v; ξττv; x̃(τ+1)v+1; y·|τv)

≤gτv+1,(τ+1)v(x∗τv+1:(τ+1)v+1; ξττv; x̃(τ+1)v+1; y·|τv)

− ∂gτv+1,(τ+1)v(x̃τv+1:(τ+1)v) · (x∗τv:(τ+1)v − x̃τv:(τ+1)v)

− m

2

(τ+1)v∑
t=τv+1

‖x∗t − x̃t‖
2

By the optimality of x̃τv+1:(τ+1)v minimizes the cost func-
tion gτv+1,(τ+1)v(x; ξττv; x̃(τ+1)v+1; y·|τv), we have the first or-
der condition

∂gτv+1,(τ+1)v(x̃τv+1:(τ+1)v)·(x∗τv+1:(τ+1)v−x̃τv+1:(τ+1)v) ≥ 0,

hence

(τ+1)v∑
t=τv+1

(
h(x̃t, yt|τv) + β ‖x̃t − x̃t−1‖

)
+ β ‖x̃τv+1 − ξττv‖+ β

∥∥x̃(τ+1)v+1 − x̃(τ+1)v

∥∥
≤

(τ+1)v∑
t=τv+1

(
h(x∗t , yt|τv) + β ‖x∗t − x∗t−1‖ −

m

2
‖x̃t − x∗t ‖

2
)

+ β ‖x∗τv+1 − ξττv‖+ β
∥∥x̃(τ+1)v+1 − x∗(τ+1)v

∥∥ ,
Substituting the above inequality into (21) and summing



over τ , we have

cost(FHC1(v))− cost(OPT ) =
M∑
τ=0

g1,T (ξτ+1; y)− g1,T (ξτ ; y)

≤2β

M−1∑
τ=0

∥∥∥x∗(τ+1)v+1 − x̃(τ+1)v+1

∥∥∥− M∑
τ=0

(τ+1)v∑
t=τv+1

m

2
‖x̃t − x∗t ‖

2

+ 2G

M∑
τ=0

(τ+1)v∑
t=τv+1

∥∥yt − yt|τv∥∥α2
≤

M∑
τ=1

(
2β
∥∥x∗τv+1 − x̃τv+1

∥∥− m

2

∥∥x∗τv+1 − x̃τv+1

∥∥2
)

+ 2G

M∑
τ=0

(τ+1)v∑
t=τv+1

∥∥yt − yt|τv∥∥α2
(a)

≤
2β2M

m
+ 2G

T∑
t=1

∥∥∥yt − yt|t−φ1(t)

∥∥∥α .
where (a) is because for any t,

2β ‖x∗t − x̃t‖ −
m

2
‖x∗t − x̃t‖

2 = −
m

2
(‖x∗t − x̃t‖ −

2β

m
)2 +

2β2

m
≤

2β2

m
.

Summing over k from 0 to v − 1 as in (18) and taking
expectation on both sides as in (19) finishes the proof.

B.6 Proof of Theorem 7
By the proof of Theorem 1 and assuming one dimensional

setting, we have

cost(CHC)− cost(OPT ) ≤
2βTD

v
+

2G

v

T∑
τ=1

v−1∑
k=0

∣∣yτ − yτ |τ−k∣∣α
=

2βTD

v
+

2G

v

T∑
τ=1

v∑
k=1

∣∣∣∣∣∣
τ∑

s=τ−k+1

f(τ − s)e(s)

∣∣∣∣∣∣
α

(22)

which is a function of the randomness of prediction noise
e = (e(1), . . . , e(T )), let

l(e) :=
2βTD

v
+

2G

v

T∑
τ=1

v∑
k=1

∣∣∣∣∣
τ∑

s=τ−k+1

f(τ − s)e(s)

∣∣∣∣∣
α

be the upper bound of the competitive difference of CHC in
terms of the random variables e(1), . . . , e(T ). For every i, let
e(i)′ be an independent and identical copy of e(i), and let
e′i = (e(1), . . . , e(i− 1), e(i)′, e(i+ 1), . . . , e(T )) be the vector
that differ from e by the replacing the ith coordinate with
an identical copy of e(i), then let δis be the kronecker delta,
we have

|l(e)− l(e′i)| ≤
2G

v

T∑
τ=1

v∑
k=1

∣∣∣∣∣∣
τ∑

s=τ−k+1

δisf(τ − s)e(s)

∣∣∣∣∣∣
α

−
2G

v

T∑
τ=1

v∑
k=1

∣∣∣∣∣∣
τ∑

s=τ−k+1

δisf(τ − s)e′i(s)

∣∣∣∣∣∣
α

≤
2G

v

T∑
τ=1

v∑
k=1

∣∣∣∣∣∣
τ∑

s=τ−k+1

δisf(τ − s)(e(s)− e′i(s))

∣∣∣∣∣∣
α

where the last inequality is due to the fact that F (x) = xα

is a α-Hölder continuous with constant 1, hence

∀x, y, |xα − yα| ≤ |x− y|α. (23)

Therefore,

|l(e)− l(e′i)| ≤
2G

v

T∑
τ=1

v∑
k=1

∣∣∣∣∣∣
τ∑

s=τ−k+1

δisf(τ − s)(e(s)− e′i(s))

∣∣∣∣∣∣
α

(a)

≤
2G

v

v∑
k=1

T∑
τ=1

τ∑
s=τ−k+1

δis|f(τ − s)|α|e(s)− e′i(s)|α

(b)
=

2G

v
|e(i)− e′i(i)|α

v∑
k=1

k−1∑
s=0

|f(s)|α

≤
21+αGεα

v

v−1∑
s=0

(v − s)|f(s)|α (24)

where (a) is because for all α ≤ 1, (
∑k
i=1 |ai|)

α ≤
∑k
i=1 |ai|

α,
to prove this, note that we only need to show that

∀x, y ≥ 0, (x+ y)α ≤ xα + yα (25)

and iterate this inequality k times. To prove the above, note
that when x = 0 or y = 0 or α = 1, the inequality is trivially
true. Otherwise, wlog assume x ≥ y, and let t = y/x ≤
1. (25) is equivalent to (1 + t)α ≤ 1 + tα, this is true by
examining the function F (t) = 1 + tα − (1 + t)α, note that
F (0) = 0, and for α < 1, F (t)′ = α(tα−1 − (1 + t)α−1) > 0,
since ax hence F (t) ≥ 0 for all t, which proves (a).

(b) is because let s′ = τ − s, then

v∑
k=1

T∑
τ=1

τ∑
s=τ−k+1

δis|f(τ − s)|α|e(s)− e′i(s)|α

=

v∑
k=1

T∑
τ=1

k−1∑
s′=0

δi(τ−s′)|f(s′)|α|e(τ − s′)− e′i(τ − s′)|α

=

v∑
k=1

k−1∑
s′=0

|f(s′)|α
(

T∑
τ=1

δi(τ−s′)|e(τ − s′)− e′i(τ − s′)|α
)

=|e(i)− e′i(i)|α
v∑
k=1

k−1∑
s′=0

|f(s′)|α

Let ci = 21+αGεα
∑v−1
k=0

(v−k)|f(k)|α
v

, then by (24), |l(e)−
l(e′i)|2 ≤ c2i , by Lemma 9, we have

P(cost(CHC)− cost(OPT ) ≥ V1T + u)

≤ exp

(
−2u2∑T
i=1 c

2
i

)
= exp

(
−u2

21+2αG2ε2αTF (v)

)

where F (v) =
(

1
v

∑v−1
k=0(v − k)|f(k)|α

)2
.

B.7 Proof of Corollary 8
By Theorem 7,

P
(

1

T
[cost(CHC)− cost(OPT )] > V1 + u

)
=P (cost(CHC)− cost(OPT ) > V1T + uT )

≤ exp

(
−2u2∑T
i=1 c

2
i

)
= exp

(
−u2

21+2αG2ε2αF (v)/T

)
.

If v ∈ O(1), then F (v) is bounded since f(s) is bounded,
hence F (v)/T → 0 as T →∞.



Otherwise, if f(s) ≤ cηs for η < 1, denote a = ηα, then

v−1∑
k=0

(v − k)|f(k)|α ≤ cα
(
v

v−1∑
k=0

ak − a
v−1∑
k=0

d

da
(ak)

)

=cα
(
v

1− av

1− a
− a

d

da

(
1− av

1− a

))
= cα

v − a(v + 1) + av+1

(1− a)2

then

F (v) =

(
1

v

v−1∑
k=0

(v − k)|f(k)|α
)2

≤
(
cα(v − ηα(v + 1) + ηα(v+1))

(1− a)2v

)2

≤
(

cα

(1− ηα)2
+

cαηα

(1− ηα)2v

)2

∈ O(1).

Hence in this case F (v)/T → 0 as T →∞.


