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1 INTRODUCTION
One of the major issues with the integration of renewable energy

sources into the power grid is the increased uncertainty and variabil-

ity that they bring. If this uncertainty is not su�ciently addressed,

it will limit the further penetration of renewables into the grid and

even result in blackouts. Compared to energy storage, Demand

Response (DR) has advantages to provide reserves to the load serv-

ing entities (LSEs) in a cost-e�ective and environmentally friendly

way. DR programs work by changing customers’ loads when the

power grid experiences a contingency such as a mismatch between

supply and demand. Uncertainties from both the customer-side and

LSE-side make designing algorithms for DR a major challenge.

�is paper makes the following main contributions: (i) We pro-

pose DR control policies based on the optimal structures of the

o�ine solution. (ii) A distributed algorithm is developed for imple-

menting the control policies without e�ciency loss. (iii) We further

o�er an enhanced policy design by allowing �exibilities into the

commitment level. (iv) We perform real world trace based numer-

ical simulations which demonstrate that the proposed algorithms

can achieve near optimal social cost. Details can be found in our

extended version [3].

2 OPTIMIZATION PROBLEM
�e goal is to simultaneously decide the capacity planning κ and

a practical DR policy x(D,δ) to minimize the expected social cost

caused by a random aggregate supply-demand mismatch D (which

captures mismatches from both the generation side and the load

side).

min

κ,x(D,δ )
Ccap(κ)

+ ED,δ,C(·)

[∑
i
Ci (xi (D,δi )) +Cg

(
D −

∑
i
xi (D,δi )

)]
s.t. max

D,δ

{
D −

∑
i
xi (D,δi )

}
≤ κ (1a)

min

D,δ

{
D −

∑
i
xi (D,δi )

}
≥ −κ . (1b)

where δi and Ci (·) are respectively for customer i the individual
random demand mismatch and random cost function (e.g. aix
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Figure 1: Annual Social Cost vs. (a) price of capacity in LIN
compared to di�erent baselines, (b) level of commitment in
LIN+(ρ) for di�erent amounts of Relative Standard Devia-
tions (RSD) on the customer cost parameter a.

with ai as a random coe�cient) for performing DR, Ccap(·) and
Cg(·) are respectively the LSE’s cost for purchasing capacity and

for managing the remaining mismatch, We note that (1a) and (1b)

are worst-case constraints so that the remaining mismatch does not

go beyond the purchased capacity. �e two main challenges of this

problem are (i) deciding the optimal capacity κ before implementing

the DR policy, and (ii) optimizing an online DR policy. �e cost

functions are assumed to be convex.

Optimal Real-time Solution
We provide the characterization of the optimal real-time solution

to reveal special structures that we take advantage of in our policy

design (Section 3). �e real-time DR decision problem for a given

capacity κ at a time t is:

R(κ; t) := min

x(t )

∑
i
Ci (xi (t); t) +Cg

(
D(t) −

∑
i
xi (t)

)
(2a)

s.t. − κ ≤ D(t) −
∑
i
xi (t) ≤ κ . (2b)

Lemma 2.1. Problem (2) is a convex optimization problem.
�e Karush-Kuhn-Tucker (KKT) optimality conditions of this

real-time problem show that when the capacity constraint on κ
is non-binding, i.e., −κ < D(t) − ∑

j ∈V x∗j (t) < κ, it implies that

C ′i (x
∗
i (t)) = C ′

g
(D(t) −∑

j ∈V x∗j (t)). �is means that the marginal

cost for each customer to provide demand response is the same, all

of which is equal to the LSE’s marginal cost to tolerate the mismatch.

Furthermore, we get the following lemma which helps determine

the optimal capacity in the next subsection:

Lemma 2.2. R(κ; t) as de�ned by (2) is a convex function of κ.
Additionally the negative of the sum of dual variables θ + θ from
constraint (2b) is the subgradient of R(κ; t) w.r.t. κ.

Optimal Capacity
We can use the real-time decision problem (2) to decide what the

optimal capacity should be in the following capacity problem:

min

κ
Ccap(κ) + ED,δ,C(·) [R(κ; t)] (3)

Theorem 2.3. (3) is a convex optimization problem over κ.
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�e KKT optimality conditions for the capacity problem and

Lemma 2.2 give us the following result:

C ′
cap
(κ∗) = ED,δ,C(·)

[
θ (κ∗; t)

]
(4)

where we use the notation of θ (κ; t) as a function to represent the

sum of the optimal dual variables for constraint (2b). �is means

that for an optimal capacity, the marginal cost of capacity must

equal the expected dual price for that capacity constraint.

3 POLICY DESIGN
Linear policy
Motivated by the desire to �nd a simple DR policy x(D,δi ∈V ) that
preserves convexity, we focus on a simple but powerful linear de-

mand response policy that is a function of total and local net de-

mands: xi (D,δi ) = αiD + βiδi + γi . (5)

Intuitively, there are three components: αiD implies each customer

shares some (prede�ned) fraction of the global mismatch D; βiδi
means customer i may need to take additional responsibility for the

mismatch due to his own demand �uctuation and estimation error;

�nally, γi , the constant part, can help when the random variables

E[D] and/or E[δi ] is nonzero. �en the LSE needs to solve (1) with

(5) to obtain the optimal parameters for the linear contract, i.e.,

α , β ,γ , as well as the optimal capacity κ.

Theorem 3.1. Problem (1) with the linear policy (5) is a convex
optimization problem.
Distributed algorithm
In most cases, the LSE’s information on the customers’ cost func-

tions is much less accurate than the customer themselves’. �is

can also be due to privacy concerns. To handle this, we design a

distributed algorithm so that the LSE does not need the information

of the customer cost functions, while still achieving the optimal

(κLIN ,α ∗, β∗,γ∗) for Problem (1) with the linear policy (5). We in-

troduce and substitute (ui ,vi ,wi ) for (αi , βi ,γi ) in each customer’s

estimated cost function Ĉi (·) and the LSE uses the corresponding

price set (πi , λi , µi ) to incentivize each customer to change their

parameters.

Distributed Algorithm for LIN:
(0) Initialization: (α , β,γ , u, v,w,π ,λ, µ) := 0.
(1) LSE: receives (ui ,vi ,wi ) from each customer i ∈ V .

• Solves Problem (9) and updates (α , β,γ ) with the

optimal solution.

• Updates the stepsize:

η =
ζ /k

| |(α , β,γ ) − (u, v,w)| |2
(6)

where ζ is a small constant and k is the iteration

number.

• Updates the dual prices, ∀i ∈ V:

(πi , λi , µi ) := (πi , λi , µi ) + η ((αi , βi , γi ) − (ui , vi , wi )) (7)

• Sends (πi , λi , µi ) to the each customer respectively.

(2) Customer i ∈ V: receives (πi , λi , µi ) from LSE.

• Solves Problem (8) and updates (ui ,vi ,wi ) with op-

timal solution.

• Sends (ui ,vi ,wi ) to the LSE.

(3) Repeat Steps 1-2 until | |(α , β ,γ ) − (u, v,w)| |2 ≤ ϵ where
ϵ is the tolerance on magnitude of the subgradient.

�us πiui +λivi + µiwi is the total payment to customer i for the
linear demand response policy. �e individual customer’s problem

for a given set of prices is

min

ui ,vi ,wi
ED,δi

[
Ĉi (uiD +viδi +wi )

]
− πiui − λivi − µiwi (8)

while the LSE’s optimization problem among all the customers is

min

α ,β,γ,κ
Ccap (κ) +

∑
i ∈V
(πiαi + λiβi + µiγi )

+ ED,δ

[
Cg

(∑
i ∈V
(δi − αiD − βiδi − γi ) − r

)]
(9)

s.t. (1a), (1b)

In order for the customers and the LSE to negotiate and obtain the

optimal prices we use the Subgradient Method (see [2] Chapter 6).

Theorem 3.2. �e distributed algorithm’s trajectory of dual prices
converge to the optimal dual prices for Problem (1) with (5).

Flexible Commitment Demand Response
One potential drawback of LIN is that customers are forced to follow

the speci�ed linear policy. In some cases, customers may face a very

high cost to follow the policy, e.g., when there are some critical jobs

to be �nished, represented by a larger ai (t). Motivated by this obser-

vation and some existing regulation service programs, we modify

the LIN policy to add some �exibility limited by a single parameter

ρ. We call the new algorithm LIN
+(ρ) where each customer has up

to 1 − ρ (in percentage) of the time slots in which they do not need

to follow the policy according to her realized αi (t). In other words,

she may let xi (t) = 0 for such timeslots. Note that although we add

the �exibility to LIN in this paper, the approach is in fact general

and can be applied to a wide range of fully commi�ed programs.

4 PERFORMANCE EVALUATION
Experimental Setup. We simulate an LSE supplying power to 300

customers. Each customer has a particular demand of load which

we model by utilizing the traces obtained from the UMass Trace

Repository [1].

LIN is close to optimal. Figure 1(a) compares the social cost of LIN

to baselines using the o�ine optimal OPT (3) as a lower bound and

sequential algorithm SEQ as an upper bound. �e baseline SEQ �rst

makes a conservative capacity planning decision about κ, and then

sets a price for DR to obtain a targeted amount of DR.�e social cost

of LIN is no more than 10% higher compared to the fundamental

limit OPT and is signi�cantly less than SEQ. �e social cost of SEQ

increases rapidly with increasing capacity prices because of the

conservative 90kW capacity used by SEQ to protect the system from

any le�over mismatch.

Additional cost savings brought by LIN+(ρ). Depicted in Figure 1(b),
as ρ decreases from 1, the social cost �rst decreases due to the fact

that some customers with very high ai (t) are allowed to not provide
demand response. As ρ continues to decrease, we have more cus-

tomers not providing demand response and the cost actually goes up

again. �is is because the LSE’s penalty for the mismatch becomes

larger than the costs of customers to provide demand response. At

ρ = 0.8, it achieves a cost savings 7-8%. Recall that the gap between

LIN and the o�ine optimal OPT is about 10%. �is means LIN
+(ρ∗)

achieves near optimal cost.
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