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ABSTRACT
Multi-timescale electricity markets augment the traditional electric-
ity market by enabling consumers to procure electricity in a futures
market. Heavy power consumers, such as cloud providers and data
center operators, can signi�cantly bene�t from multi-timescale
electricity markets by purchasing some of the needed electricity
ahead of time at cheaper rates. However, the energy procurement
strategy for data centers in multi-timescale markets becomes a
challenging problem when real world dynamics, such as spatial
diversity of data centers and uncertainties of renewable energy, IT
workload, and electricity price, are taken into account. In this pa-
per, we develop energy procurement algorithms for geo-distributed
data centers that utilize multi-timescale markets to minimize the
electricity procurement cost. We propose two algorithms. �e �rst
algorithm provides provably optimal cost minimization while the
other achieves near-optimal cost at a much lower computational
cost. We empirically evaluate our energy procurement algorithms
using real-world traces of renewable energy, electricity prices, and
the workload demand. Our empirical evaluations show that our
proposed energy procurement algorithms save up to 44% of the
total cost compared to traditional algorithms that do not use multi-
timescale electricity markets or geographical load balancing.
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1 INTRODUCTION
Data centers are becoming the largest and the fastest growing
consumers of electricity in the United States. It is reported that
US data centers consumed 91 billion kilowa�-hours (kWh) in 2013,
which is more than twice of the electricity consumed by households
in New York City (see [41]). In the same report, the electricity
consumption of the data centers is estimated to reach 140 billion
kWh in 2020 due to the explosion of demand for cloud computing
and other Internet-scale services. Global cloud providers, such
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as Google and Amazon, who operate multiple data centers spend
billions of dollars annually on their electricity bills [34].

Multi-timescale electricity markets have been proposed to im-
prove the e�ciency of electricity markets [13]. Multi-timescale
electricity markets encompass both forward (futures) and spot (real-
time) markets. While energy is procured at the time of consumption
in a spot market, forward markets allow customers to buy elec-
tricity a day ahead or even several months ahead of when it is
consumed. Forward electricity markets reduce the risk for both the
supplier and consumer by reducing the quantity of energy trading
in the real-time spot markets [5]. Furthermore, purchasing electric-
ity ahead of time can facilitate the expansion of renewable energy
sources. For example, Google invested in purchasing renewable
energy from renewable project developers for 20 years [17].

Utilizing multi-timescale markets has great potential for elec-
tricity cost savings for cloud providers who operate one or more
data centers. �ere has been much recent work that exploits the
variation of real-time electricity prices in the temporal and spatial
dimensions to reduce the total electricity cost. For example, prior
papers show how a cloud provider can exploit real-time electricity
prices in multiple market locations and move the load to locations
with a cheaper price [11, 34, 35]. Other papers exploit temporal
variation in the real-time energy price and use energy storage to
reduce the electricity costs [19, 20, 44], i.e., the storage device is
charged during the times when the electricity price is low and
discharged when the price is high. However, while these works
focus on traditional real-time markets, the potential of using multi-
timescale markets for electricity cost reduction is studied in the
context of a cloud provider, and is the focus of our paper.

In particular, using forward markets to lower the electricity cost
for a cloud provider is challenging for multiple reasons. �e opti-
mal amount of electricity that a cloud provider should purchase
in advance for a particular location depends on the workload, the
availability of onsite renewables, and the real-time electricity price
at t at that location. �e main challenge is that the future work-
loads, renewables, and real-time electricity prices are not perfectly
predictable and are subject to signi�cant forecasting errors. Note
that if the cloud provider is too conservative and buys too less
from the forward market, any shortfall in electricity would need
to be covered by purchasing it from the more expensive1 real-time
market. Likewise, if the cloud provider is too aggressive and buys
too much from the forward market, any excess in electricity will go
wasted. In addition, the ability of a cloud provider to move the load
from one data center to another, possibly incurring a performance
penalty that we characterize as the “delay cost”, adds an additional

1In some cases, the prices in the forward markets might be (on average) higher than
real-time prices. If so, instead of saving electricity expenditure, the cloud provider can
participate in forward markets to reduce cost variations. Our model can be extended
to handle either case.
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level of complexity that needs to be optimized. In this work, we pro-
vide an optimization framework for tackling the aforementioned
challenges.

Our contributions are three-fold.
(1) Optimal algorithm development. We develop two algo-

rithms for a cloud provider with geo-distributed data centers to
buy electricity in multi-timescale markets: one algorithm provides
optimality guarantees, while the other is simpler, uses limited pre-
dictions but achieves near-optimal performance. To develop the
energy procurement system, we �rst model the problem of procur-
ing electricity for geo-distributed data centers in multi-timescale
markets in Section 3. �e system model is general and applicable
to any global cloud provider with access to multi-timescale electric-
ity markets. We focus on two-timescale markets that consist one
long-term market and one real-time market, though our model and
algorithms can be extended to handle multiple markets at various
timescales. We present the characteristics of the objective functions
and the optimal solution in Section 4, which forms the theoretical
basis for our algorithm design. �e two algorithms that we design,
prediction based algorithm (PA) and stochastic gradient based al-
gorithm (SGA), are described in Section 6. Both algorithms seek
to minimize the total operating cost of the cloud provider across
all data centers. While PA is simple and performs very well, SGA
achieves the optimal solution.

(2) Predictability analysis using real-world traces. To pro-
vide the inputs for our energy procurement algorithms, we collect
and analyze real world traces of PV generation, wind generation,
electricity prices, and IT workload demand. A detailed data analysis
of real-world traces of PV generation, wind generation, electricity
prices, and workload, is presented in Section 5. �e data analysis
not only enables us to evaluate our algorithms using real-world
data but also provides insights into the nature of prediction errors.
To procure electricity in forward markets, the energy procurement
system needs to predict the renewable generation, workload, and
electricity prices in real-time. �erefore, we focus on addressing
the following questions. What do the distributions of prediction
errors look like? How correlated are prediction errors in the spatial
domain?

(3) Empirical evaluation. We carry out a detailed empirical
evaluation of our proposed energy procurement systems using real
world traces. In Section 7, we demonstrate that SGA can converge
to the optimal solution in a small number of iterations. Moreover,
we show that PA, our heuristic algorithm, surprisingly achieves
a near-optimal solution. �is is partially because the real-time
optimization takes into consideration the trade-o� between energy
cost and delay cost, and is able to compensate for some prediction
errors by redirection workloads. �e proposed energy procurement
systems are compared with other comparable energy procurement
strategies to highlight their bene�ts. �e impacts of renewable
energy and prediction errors on the proposed systems are also
presented.

2 BACKGROUND AND PRIORWORK
Internet-scale services, such as Google’s search services, Akamai’s
content delivery services, and Amazon’s cloud computing services
are rapidly growing, consume large amounts of energy [22]. In

fact, energy costs account for a large portion of the overall oper-
ating expenditure of such services. �e two main approaches for
reducing the energy cost is to procure energy more cost e�ective
and to reduce the total energy consumption. While there has been
much work on both approaches, we provide a survey of the energy
procurement literature below.

A key technique used to reduce energy costs is to exploit the
temporal variation of energy prices and shi� the delay-tolerant
workload, such as batch jobs, to o�-peak time periods when the
electricity prices are lower [15, 26, 30, 43]. An alternate technique
is to “move the energy” using a ba�ery. By charging the ba�eries
from the grid when the electricity prices are lower and discharging
it when prices are higher, the overall energy costs can be reduced
[29, 40]. Since service providers pay for the peak of electricity usage,
ba�eries can also be used to “shave” the power peaks to reduce the
energy costs [33]. Our approach not only reduces the cost for a
single data center but also for cloud providers with multiple data
centers.

Another complementary technique that is relevant to service
providers with multiple geo-distributed data centers is to exploit
the geographical variation in energy prices. �ere has been much
work in geographical load balancing (GLB) algorithms that route
the workload to the regional markets with cheap electricity prices
to reduce the total energy cost [28, 34]. While these works rely on
the spatial diversity of electricity prices in real-time, our approach
deal with the uncertainty of electricity prices in forward markets.

In addition, Data centers can reduce the energy cost by utilizing
the free renewable energy. Although the output of renewable en-
ergy sources is intermi�ent, a single data center can schedule its
delay-tolerant workloads to adapt to the renewable generation [27].
Service providers with geographically distributed data centers can
even do be�er by shi�ing their workload to the data centers that
have available renewable sources [10, 21, 28]. �us, the amount
of energy cost reductions heavily depends on the percentage of
delay-tolerant workloads and the penetration of renewable energy.

Participating in multiple time-scale markets, i.e., in both for-
ward electricity markets and spot markets, has not been explored
in-depth in prior work, and it can be a promising approach to more
e�ectively reduce the energy cost. �e forward electricity markets,
such as long-term (several months) and short-term (day-ahead),
were designed to improve the traditional electricity markets, which
have only spot (real-time) markets [5]. Forward electricity markets
have already been adopted in some parts of the US such as New
England [13]. Forward markets can bene�t both customers and
utility suppliers. For example, the forward markets allow suppli-
ers and consumers to agree on a �xed price several months ahead
of when the electricity is produced and consumed. �is allows
the supplier to plan ahead and ensure the availability of energy
for its customers. �e forward markets usually provide cheaper
prices than the spot markets. �ere are a few recent papers on data
centers that consider forward markets; these papers deal with the
�nancial risk arising from the uncertainties in electricity prices
and workload [36, 42]. Geographical load balancing systems with
both day-head market and real-time market have been studied in a
recent publication [16]. However, the proposed solution is some-
how restrictive to particular distributions to facilitate stochastic
optimization and does not provide any optimality guarantee.



Optimal Energy Procurement for Geo-distributed Data Centers
in Multi-timescale Electricity Markets Performance’17, Nov. 2017, NY, USA

Figure 1: Geo-distributed data centers in long-term and real-
time markets.

3 MODEL
In this section, we present our model of the energy procurement
problem for geo-distributed data centers participating in multi-
timescale markets. For analytical tractability, we consider a two-
timescale se�ing, consisting of a long-term electricity market and
a real-time electricity market.

3.1 System model
Two-timescalemarkets. A service provider operating geo-distributed
data centers can purchase electricity in two markets – a long-term
market and a real-time market. �e electricity consumed at time
t = 0 must be procured from the real-time market at t = 0 and/or
from the long term market ahead of time at t = �Tl .

Geo-distributed data centers. We consider a set N of geo-
distributed data centers serving workload demands from a set � of
sources as illustrated in Figure 1. �e workload demand from each
source is split between the |N | data centers. Here, a source can
represent the aggregate demand from a group of local users, such
as users of a particular city, ISP, or geographical region. Each data
center has access to renewable energy sources. Further, each data
center participates in a (local) long-term electricity market and a
(local) real-time electricity market. In other words, each data center
i can buy electricity ahead of time in its long-term market, and can
also buy additional electricity in its real-time market if necessary.

Energy procurement system (EPS). Our proposed energy pro-
curement system for geo-distributed data centers is depicted in
Figure 2. �ere are three main components, namely, the long-term
forecaster, the energy procurement (EP) in long-term markets and
the geographical load balancing (GLB). �e long-term forecaster
provides the forecasted information for the energy procurement.
�e forecasted information includes the predicted values and the
prediction error distributions of IT workload, renewable energy
generations, and electricity prices. We design the algorithms for
the long-term forecaster in Section 5. �e EP component procures
electricity for each data center in the corresponding long-term
markets (at time t = �Tl ) based on the electricity prices in the
long-term markets and forecasts of real-time prices, workload, and
renewable generation. �e GLB component (at time t = 0) dis-
tributes (routes) the realized workload from sources to data centers,
provisions the required computing capacity at each data center, and
procures additional electricity as needed in the real-time markets.

Figure 2: Energy Procurement System (EPS)Architecture for
geo-distributed data centers.

Workload. Workload demand from source j in real-time (t = 0)
is denoted as Lrj .We assume that the exact realization of the random
vector Lr = (Lrj , j 2 � ) is known to the cloud provider at time t = 0,
and is an input to GLB. Let �i j denote the distributed workload
arrival from source j to data center i at time t = 0 (set by GLB).
�us,

L

r
j =

X

i 2N
�i j (j 2 � ),

�i =
X

j 2�
�i j (i 2 N ).

Data center. LetMi denote the number of servers in data center
i . �e number of active servers at real-time (time t = 0) is denoted
bymi , which is a control parameter. In practice, there can be more
than a hundred thousand servers in a single data center. �us, in
our mathematical modeling, we treatmi as a real number satisfying
0  mi  Mi . For the sake of presentation, we assume the servers
are homogeneous. However, a heterogeneous model can readily be
generalized by considering multiple group of homogeneous servers.
�erefore, a heterogeneous data center is equivalent to multiple
logical homogeneous data centers.

At time t = 0, the power consumption of data center i is denoted
by dri . �e power consumption of data center is dependent on the
power consumption of individual servers. Meanwhile, the power
consumption of a server is proportional to the server workload
arrival �i

mi
, i.e., e1 �i

mi
+ e0, where e1 and e0 are the constants [1,

26]. Hence, the power-proportional model of data center can be
formulated as dri = e1�i + e0mi and d

r
i  Di where Di is the

capacity of data center i . We assume that dri = Di only if Mi
servers are active and run at their peak power.

�is model can be further generalized to handle other se�ings.
For instance, if no servers can be turned o�, dri simply becomes
e1�i + e0Mi . Furthermore, the server power model can be extended
from linear function to general convex function without hurting
the tractability of the optimization problem.

Renewable energy. Data centers can utilize their integrated
RESs. Letwr

i denote the renewable energy generation at data center
i in real-time (t = 0). We assume that the exact realization of the
random vectorwr = (wr

i , i 2 N ) is known at time t = 0, and is an
input to GLB.
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Electricity price. For each data center, the cloud provider can
purchase electricity at time t = �Tl in the local long-term market
and then purchase any additional electricity needed in the local
real-time market at time t = 0. For data center i, let pli denote the
long-term price for 1 unit of electricity, and pri denote the real-time
price for 1 unit of electricity. We assume that pl = (pli , i 2 N )
is �xed (or equivalently, is known at the time of the long-term
procurement), and pr = (pri , i 2 N ) is a random vector whose exact
value is known is known at time t = 0 and is an input to GLB.

Note that the real-time workload Lr , the real-time renewable
generationwr , and the real-time electricity prices pr are unknown
at the time of the long-term procurement by the EP component,
but are known at the time of operation of the GLB component. We
assume that the random vector (Lr ,wr ,pr ) is jointly continuous. In
addition, all thewr

i , L
r
j , and p

r
i are assumed to be bounded random

variables.

3.2 Cost model
�e total cost of operating geo-distributed data centers in composed
of a delay cost and an energy cost. �e delay cost is the monetary
cost incurred due to the delay in processing the arriving workload.
�e energy cost is the total electricity bill from the long-term and
real-time markets.

Delay cost. We consider both the network delay between data
centers and sources and the processing time within a data center.
�e network delay �i j captures the delay that propagates the work-
load �i j from source j to data center i . �e queuing delay �i (mi , �i )
denotes the delay at data center i to process its arrival workload �i .
We assume that �i is strictly decreasing inmi , strictly increasing in
�i , and jointly convex in bothmi and �i . For stability, we need that
�i < mi µi . Here, µi is the service rate of a server in data center i .
�us, we de�ne hi j (mi , �i ) = 1 for �i � mi µi .

We model the delay cost hi j (mi , �i ) of routing and processing
each unit of workload from source j to data center i as follows.

hi j (mi , �i ) = �

⇣
�i (mi , �i ) + �i j

⌘
. (1)

Here, the parameter � weighs the delay relative to the energy
cost. While (1) assumes a linear relationship between incurred
delay and the associated monetary cost (as is suggested in [6]),
our model allows for a non-linear (convex) relationship between
delay and its monetary cost to the cloud provider. �e delay cost of
transmi�ing workload �i j from source j to data center i is computed
as �i jhi j (mi , �i ). We assume that �i jhi j (mi , �i ) is jointly convex
inmi , and �i j .

A speci�c instance of the delay cost function hi j that satis�es
the above assumptions, and which we use in our experimental
evaluations, is

hi j (mi , �i ) = �

 
1

µi � �i/mi
+ �i j

!
(�i < mi µi ), (2)

where the �rst term 1
µi��i /mi

above captures queuing delay at delay
center i, which is based on the well-known mean delay formula for
the M/GI/1 processor sharing queue.

Energy cost. Let qli and q
r
i respectively denote the amount of

electricity purchased in the long-term market and the real-time
market by data center i . Here, we require that su�cient electricity

is procured to process the workload routed to each data center as

q

r
i +w

r
i + q

l
i � d

r
i (i 2 N ).

�e electricity bills of data center i in the long-term market and
the real-time market are respectively computed as

R

l
i (q

l
i ) = p

l
iq
l
i i 2 N ,

R

r
i (q

r
i ) = p

r
i q

r
i i 2 N .

3.3 Formulation of optimal energy
procurement in multi-timescale markets

In this section, we describe the optimization formulation for optimal
energy procurement. Recall that the total cost of operating geo-
distributed data centers in our two-timescale market se�ing is the
sum of the energy cost and the delay cost, given by

F =
X

i 2N
R

l
i (q

l
i ) +

X

i 2N
R

r
i (q

r
i ) +

X

i 2N , j 2�
�i jhi j (mi , �i ).

We seek to minimize E [F ] subject to the aforementioned con-
straints. Note that this optimization is performed on two timescales,
with di�erent sets of information available at each. �e EP com-
ponent optimizes the long-term procurements ql = (qli , i 2 N )
given only distributional information of the real-time workload
Lr , the real-time renewable generationwr , and the real-time elec-
tricity prices pr . �e GLB component optimizes the workload
routing � = (�i j , i 2 N , j 2 � ), the number of active servers
m = (mi , i 2 N ) at the data centers, and the real-time procure-
ments qr = (qri , i 2 N ) given the prior long-term procurements ql ,
and the exact realization of (pr ,Lr ,wr ). Below, we �rst formalize
the real-time optimization, followed by the long-term optimization.

Geographical load balancing in real-time markets.
Note that in real-time, GLB optimizes the real-time procurements

qr , the numbers of active serversm, and the workload routing �,
given the long-term procurements ql and the realization of the
random vector (pr ,Lr ,wr ).�e total cost as seen by GLB is

F

r (qr ,m,�,pr ) :=
X

i 2N
R

r
i (q

r
i ) +

X

i 2N , j 2�
�i jhi j (mi , �i ).

�us, the real-time optimization is de�ned as follows.

GLB-RT: min
m,�,qr

F

r (qr ,m,�,pr )

s.t.
�i j � 0 8i 2 N , j 2 � (3a)
X

i 2N
�i j = L

r
j 8j 2 � (3b)

�i  mi µi , 8i 2 N (3c)
0  mi  Mi 8i 2 N (3d)
q

r
i � 0, 8i 2 N (3e)

e1�i + e0mi � qri �wr
i  q

l
i 8i 2 N (3f)

e1�i + e0mi  Di 8i 2 N (3g)
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Since pri � 0, it easily follows that any solution of the above
optimization problem satis�es qri = [e1�i +e0mi �wr

i �qli ]+,where
[x]+ := min{0,x }.�us, the real-time objective can be re-wri�en
as

F̃

r (ql ,m,�,pr ,wr ) =
P
i 2N p

r
i [e1�i + e0mi �wr

i � qli ]+
+

P
i 2N , j 2� �i jhi j (mi , �i ).

(4)
With this notation, GLB-RT can be equivalently expressed as fol-
lows.

min
m,�

F̃

r (ql ,m,�,pr ,wr )

s.t.
(m,�) 2 C (Lr ).

Here, the convex compact set C (Lr ) is de�ned by the constraints
(3a)–(3e) and (3g).

GLB-RT problem is a convex optimization problem and hence
can be solved e�ciently using standard techniques [8]. For instance,
CVX (Matlab So�ware for Disciplined Convex Programming) tool
[18] can be used to solve GLB-RT.

Energy procurement in long-term markets. At time t =

�Tl , the cloud provider purchases electricity ql in long-term mar-
kets that will be used at real-time. Note that optimization of the
long-term procurements has to be performed based only on distribu-
tional information for the random vector (pr ,Lr ,wr ), and subject
to the real-time optimization that will be subsequently performed
based on the realization of the random vector (pr ,Lr ,wr ).

Let us denote the optimal value of the optimization GLB-RT by
F

⇤r (ql ,pr ,Lr ,wr ).�e long-term objective is thus de�ned as

F

l (ql ) :=
X

i 2N
R

l
i (q

l
i ) + E

f
F

⇤r (ql ,pr ,Lr ,wr )
g
.

Note that the above expectation is with respect to the random vector
(pr ,Lr ,wr ).�e long-term optimization problem is then given by:

EP-LT: min F l (ql )
subject to

ql 2 RN+ .

�e above optimization is more challenging than GLB-RT. In
Section 4, we prove that EP-LT is a convex optimization and charac-
terize the gradient of the objective function. �ese results are then
used to arrive at a provably optimal stochastic gradient algorithm
in Section 6.

4 CHARACTERIZING THE OPTIMA
In this section, we collect useful properties of the optimizations
EP-LT and GLB-RT. �ese are important for understanding the
behavior of the energy procurement system, and also for prov-
ing convergence of the stochastic gradient algorithm for EP-LT in
Section 6.

Our �rst result is that EP-LT is indeed a convex optimization,
which suggests that EP-LT is a tractable optimization.

T������ 4.1. F l (ql ) is convex over ql 2 RN+ .

We provide the proof of �eorem 4.1 in Appendix A.1. Next, we
characterize the gradient of the EP-LT objective function as follows.

T������ 4.2. �e gradient of F l (·) is characterised as follows.
@F l (ql )
@qli

= pli + E

"
@F ⇤r (ql , pr , Lr ,wr )

@qli

#

= pli � E
f
�i (ql , pr , Lr ,wr )

g
,

where �i (ql , pr , Lr ,wr ) is the unique Lagrange multiplier of GLB-RT
corresponding to the constraint (3f).

Note that the �rst equality in the theorem statement asserts
that the order of an expectation and a partial derivative can be
interchanged. �e second equality relates the partial derivative of
F

⇤r with respect to qli to a certain Lagrange multiplier of GLB-RT.
We provide the proof of�eorem 4.2 in Appendix A.2.

We note that �eorem 4.2 does not enable us to compute the
gradient of the F l (·) exactly. Indeed, the expectation the Lagrange
multiplier �i with respect to (pr ,Lr ,wr ) would in general be an-
alytically intractable. However, �eorem 4.2 does enable a noisy
estimation of the gradient of the F l (·) via Monte Carlo simulation
as follows. Suppose we simulate a �nite number, say S, of samples
from the distribution of (pr ,Lr ,wr ). In practice, we can obtain
these samples by using real-world traces as is done in Section 5.
For each sample, the Lagrange multipliers (�i , i 2 N ) can be com-
puted e�ciently by solving GLB-RT. By averaging the S instances
of (�i , i 2 N ) thus obtained, we get an unbiased estimate of the
gradient of F l (·).�is, in turn, enables us to solve EP-LT using a
stochastic gradient descent method; details follow in Section 6.

As there are two timescales in optimization, it is critical to in-
vestigate how EP-LT a�ects the operation of geographical load
balancing in real-time. We start by answering the following ques-
tion: how does the long-term procurement ql impact the power
consumption dri in data center i? Formally, we have the following
intuitive result:

L���� 4.3. At any data center i , an optimal solution always
utilizes the long term energy procurementqli and renewable generation
w

r
i as much as possible. It is simply represented by

8><>:
d

r
i � w

r
i + q

l
i ifwr

i + q
l
i < Di

d

r
i = Di ifwr

i + q
l
i � Di .

(7)

P����. Appendix A.3. ⇤

�e above lemma states that a data center i uses up the reserved
electricity, including free renewable energy and pre-purchased
electricity, because doing so reduces the queueing delay.

5 PREDICTABILITY ANALYSIS
In this section, we study the long-term predictability of metrics
critical to our procurement systems for multi-timescale markets;
namely, workload, renewable generation, and real-time electricity
price. We design two long-term prediction methods, and analyse
the prediction errors associated with each metric using real-world
traces. Our analysis also provides several insights into the nature
of the distributions of these metrics.
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Figure 3: Comparisons of SVM, AR and L-AVG.�e codes of US states are California (CA), Florida (FL), North Dakota (ND), Ne-
braska (NE), New York (NY), Texas (TX), Washington (WA), Ohio (OH), Minnesota (MN), New Jersey (NJ), Illinois (IL), Alabama
(AL), Georgia (GA), Oklahoma (OK), South Carolina (SC), Virginia (VA), and Tennessee (TN).

For our study, we collected 3-year real-world traces of photo-
voltaic (PV) generation, wind generation, and electricity prices for
20 states of the US.�e 3-year PV and wind generation data were
downloaded using the System Advisor Model (SAM) so�ware, de-
veloped by the National Renewable Energy Laboratory (NREL) [2].
�e 3-year electricity price data are from di�erent regional trans-
mission operators (RTOs) in the US, i.e., PJM, MISO, CAISO, ISONE,
and NYSIO [34]. In addition, we collected 2-month workload data
for the same 20 states from Akamai Technologies, which serves
15-30% of all Web content around the world from hundreds of data
centers around the world [32].

Long-term prediction is challenging for both statistical and phys-
ical prediction methods [24]. Statistical methods have to deal with
the weak correlation between the past and future data. Meanwhile,
physical methods require the input of physical features that are of-
ten not available for long-term predictions. For example, long-term
weather forecast requires data from many parts of the world which
are only available in some specialized centers. To improve the pre-
diction accuracy, prediction methods may exploit seasonality, such
as annual pa�erns. However, the e�ectiveness of using seasonality
depends heavily on the characteristics of the data.

We design two long-term prediction methods to produce the
inputs for our energy procurement system: An autoregressive (AR)
model and a Support Vector Machine (SVM) model. �e motiva-
tion for using the AR method is to capture daily pa�erns and the
correlation between past and future data. On the other hand, we
develop the SVM method to capture the seasonality of the data.

In particular, our AR model predicts the value x (da� + d ah,hr )
at hour hr for d ah day-ahead based on the past A days as x (da� +
d ah,hr ) =

PA�1
a=0 �ax (da��a,hr )+c .�e ARmodel can obtain the

coe�cients �a and constant c by ��ing the model to the historical
data. We observe that it is not necessary to pick a large value ofA for
long-term prediction because A = 7 already achieves competitive
performance. Additionally, d ah is set at 30 days for PV generation,
wind generation, and electricity price, and at 1 day for workload
due to the limited length of data.

Our SVM model is designed to capture the seasonality of work-
load, renewable generation, and electricity price. Similar to the
work [38], we use a multi-class SVM. �e �rst input to the SVM
model is the average of the past A days. �e rest of inputs are the
seasonality data, i.e., month of year, day of month, day of week,

and hour of day [14]. For electricity generation from PV panels and
wind turbines, we use month of year, day of month, and hour of
day to capture their seasonality. Similarly, we use month of year,
day of month, hour of day, and day of week in predicting electricity
prices. Due the limitation of the trace length, only day of week and
hour of day are used as the seasonality inputs for predicting work-
load. �e prediction window is the same as with the AR method,
i.e., 30 days for solar generation, wind generation, and electricity
prices, and 1 day for workload. �e accuracy of SVM depends on
the selection of SVM kernel function and the kernel parameters.
For each set of data, we search for the best kernel function and
the best kernel parameters using LIBSVM, an SVM tool [9]. �e
most suitable kernel function is Radial Basis Function (RBF) but the
kernel parameters di�er for each dataset.

Prediction error analysis: We now analyse the prediction er-
rors under the AR and SVM methods. We normalize the prediction
errors by the average of real values and show the values in percent-
age. For instance, a prediction error for PV generation of 20 (-20)
implies that we underestimate (overestimate) the PV generation by
20% of the average PV generation.

We compare AR and SVM with a baseline method, long-term
average (L-AVG) [39]. L-AVG assumes that the long-term data has
a long-term cycle. For example, PV generation may have a yearly
cycle. L-AVG takes the average of 30 days at the same time over
the past 2 years for PV generation, wind generation, and electricity
price. In particular, the predicted value at hour hr of day da� in �r
is computed as x (�r ,da�,hr ) = 1

2
P2
�=1

1
30

P�14
d=15 x (�r � �,da� �

d,hr ). Assuming that user behavior has a weekly pa�ern, L-AVG
takes the averages of the workload demand at the same time of
7 days in the past weeks. �e mean absolute errors (MAEs) of
three methods are illustrated in Figure 3. In general, SVM and AR
do not perform be�er than L-AVG in predicting solar and wind
generation but they are be�er than L-AVG in predicting electricity
price, and workload. In predicting PV generation, SVM outperforms
others methods in some states like California that reveal the positive
impact of seasonality. However, some states like Washington (WA)
and New York (NY) having high precipitation can negatively a�ect
the performance of SVM and AR. Predicting wind generation is
the hardest among the four types of data as the prediction errors
are very large. It is because the wind generation o�en has very
large variation and �uctuation. On the other hand, SVM and AR are
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be�er than L-AVG in terms of predicting electricity prices. AR is
surprisingly be�er than SVM in most states except for Texas (TX).
�e seasonality in real-time electricity prices is not strong enough
to bene�t SVM in long-term prediction. AR and SVM perform very
well in predicting workload compared L-AVG in short-term. Overall,
the long-term prediction errors are relatively large compared to
the mean of measured data. Figure 3 also highlights that long
prediction errors are dependent on locations, the types of data, and
the prediction methods.

What do the distributions of prediction errors look like?
Figure 4 shows the probability density of the prediction errors at dif-
ferent times in a day of using the AR method. Each line represents
the probability density of prediction errors during an hour in a day.
�e probability densities are obtained by averaging the probability
densities of all the collected data. Our �rst observation is that pre-
diction errors have zero-mean. However, the probability densities
of PV generation, wind generation, electricity price, and workload
are asymmetric. In particular, our prediction algorithms tend to
over-predict wind generation with high probability as shown by the
peaks around �80 in Figure 4(b). �is is because wind generation
is o�en low. Meanwhile, the peaks of electricity price prediction
errors are close to zero-mean. �e prediction errors of workload
are more around zero.

Howcorrelated are the prediction errors in spatial domain?
�e correlation of prediction errors in the spatial domain is of great
interest to cloud providers with geo-distributed data centers. �e
correlation coe�cients of prediction errors using AR with respect
to the distance between two locations are shown in Figure 5. We
classify PV generation, wind generation, and workload into two
groups: within the same time zone or di�erent time zones. �ere
are also two groups of electricity prices: within the same RTO or dif-
ferent RTOs. Figure 5 highlights that the distances have the greater
impact on the correlation than the groups have. In addition, the
prediction errors of PV and wind generation are strongly correlated
(greater than 0.5) within 500 km, weakly correlated (less than 0.5)
within 1000 km, and almost independent of each other when more
than 1500 km apart. Note that electricity price is more correlated
in the spatial domain than PV generation and wind generation due
to the fact that some of the prices can be generated by the same
RTO. However, the prediction errors of workload are uncorrelated
with respect to distances and groups. �is is because the workload
depends on unpredictable user behavior and the dynamic Internet
conditions.

6 ALGORITHM DESIGN
�e energy procurement system needs algorithms for both energy
procurement in long-term (EP-LT) and geographical load balancing
in real-time (GLB-RT). GLB-RT is a convex optimization problem
that can be solved e�ciently in real-time by standard techniques
[28]. �us, we focus on designing algorithms for energy procure-
ment in the long-term markets. Note that even though EP-LT is a
convex optimization (see�eorem 4.1), neither the objective func-
tion nor its gradient admit a closed-form representation, which
presents signi�cant challenges.

In this section, we design two algorithms, namely, Prediction
based Algorithm (PA) and Stochastic Gradient estimate based Al-
gorithm (SGA) for solving EP-LT. PA is a heuristic algorithm that
requires only the predicted values of renewable generations, work-
load, and electricity prices. On the other hand, SGA comes with a
convergence guarantee, but requires samples from the joint distri-
bution of renewable generations, workload, and electricity prices.
As a result, SGA can be solved in a data-driven manner.

6.1 Prediction based Algorithm (PA)
Prediction based algorithm (PA) relies on the mean values of re-
newable generation, workload, and electricity price. Fortunately,
our data analysis reveals that our prediction errors for these quan-
tities are approximately zero mean. �us, the predicted values L̂rj ,
ŵ

r
i , and p̂

r
i are good estimates of the mean values of renewable

generation, workload, and electricity price.
PA computes the long-term procurement ql by solving EP-LT

and GLB-RT at the same time, with the random variables wr
i , L

r
j ,

and pri replaced by their predicted values. Formally, this id done by
solving the following deterministic convex optimization problem.

LT-PA: min
m,�,ql

NX

i=1
p

l
iq
l
i +

NX

i=1
p̂

r
i [mi � ŵr

i � qli ]+

+ �
X

i

X

j
hi j (mi , �i j )

subject to
Constraints (3a), (3c)–(3e)
X

i 2N
�i j = L̂

r
j 8j 2 �

q

l
i � 0 8i 2 N

�e objective function of LT-PA is similar to that of the EP-LT
without the expectation operation. �e constraints overm, �, and
ql of LT-PA are identical to those of GLB-RT and EP-LT. LT-PA
is a convex optimization problem and can be solved e�ciently
by standard techniques [8]. Even though PA is a heuristic, our
experimental evaluations reveal that it provides a near-optimal
solution in realistic scenarios; see Section 7.

6.2 Stochastic Gradient-based Algorithm (SGA)
Although PA can o�er a quick heurictic decision, it is desirable to
have an algorithm that optimally procures electricity in long-term
markets. To this end, we exploit the gradient characterization of the
long-term objective (see�eorem 4.2) to design a stochastic gradient
descent algorithm. �e algorithm, namely, SGA, is summarized in
Algorithm 1. �e main idea of the algorithm is to compute a noisy
estimate of the gradient of the long-term objective by averaging the
gradient of the (random) total cost over a �nite number of sample
paths. �is noisy gradient is used to perform a stochastic gradient
descent. Stochastic approximation theory can then be used to prove
convergence to the set of optimal solutions, as long as the step-size
sequence is appropriately diminishing [23].

We prove that SGA converges to the set of optimal solutions of
EP-LT under the following standard assumption on the step-size
sequence.
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Figure 4: Probability density of prediction errors at di�erent time of the day.
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Figure 5: Correlation coe�cients of prediction errors in spa-
tial domain.

A��������� 1.
P1
�=1 (�� ) = 1 and

P1
�=1 (�� )

2 < 1.

�e convergence of SGA is asserted by the following theorem.

T������ 6.1. Under Assumption 1, almost surely, the iterates ql

generated by SGA converge to the set of optimal solutions of EP-LT as
� ! 1.

We give the proof of�eorem 6.1 in Appendix B.
Note that SGA requires samples from the joint distribution of

(wr ,Lr ,pr ).�is means that SGA can be solved in an entirely data-
driven manner, without needing to actually model the distributions
of workload, renewable generation, and electricity price, or the
complex inter-dependencies between these quantities. �is makes it
particularly suitable in today’s ‘big-data’ era. �e bo�leneck of SGA
is the computation of the noisy gradient estimate, which involves
solving S instances of GLB-RT. Moreover, the diminishing step-size
sequence implies that SGA requires a large number of iterations to
compute a near-optimal solution. However, it is important to note

Algorithm 1 Stochastic Gradient based Algorithm (SGA).

Input: Obtain pl from the |N | long-term electricity markets.
Prepare S samples of (wr ,Lr ,pr ) based on prediction error dis-
tributions.

Output: qli 8i 2 N
Initialize: qli = 0, 8i 2 N .
Step: � = 1.
while 1 do

for all k such that 1  k  S do
Solve: GLB-RT for kth sample of (wr ,Lr ,pr ) with long-term
procurement ql

Obtain: �e Lagrange multipliers � (k )i corresponding to
constraint (3f), 8i 2 N

end for
Compute: �̂i = 1

S

PS
k=1 �

(k )
i , 8i 2 N

Update: qli = [qli � �� (pli � �̂i )][0,Mi ] for 8i 2 N . [z][0,Mi ]
indicates the projection of z onto the set [0,Mi ].
Increase: � = � + 1.

end while

that since this algorithm is only used for long-term procurement,
its computation time would not be a bo�leneck in practice.

7 EMPIRICAL EVALUATION
Experimental Setup. �ere are 14 data centers in our system.
�ey are located in 10 di�erent states known to have Google data
centers: California, Washington, Oregon, Illinois, Georgia, Virginia,
Texas, Florida, North Carolina, and South Carolina. We merged the
data centers in each state creating 10 logical data centers in our sim-
ulation, i.e., |N | = 10. We assume that there are one million servers
distributed across the ten logical data centers, which is around half
of the number of servers in Amazon Web Services (AWS) [31]. �e
peak power consumption for each server is 300W. We consider 40
sources, corresponding to 40 states of the US; the corresponding
workload data is obtained from Akamai Technologies. We use the
model (2) for capturing the monetary cost of delay. �e average
workload is 30% of the total capacity of the data centers. �e net-
work delays �i j are estimated to be proportional to the distance
between sources and data centers [4]. �e average network delay
is 22 ms. �e parameter � is estimated according to the fact that
100 ms latency costs 1% of Amazon in sales [25].
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Figure 6: Convergence analysis.

To compute the energy costs of the system, we assume that
the system purchases energy in long-term markets and real-time
markets for an hour of operation. �e electricity prices in real-
time markets are the industrial electricity prices of each state in
May 2010 [3]. Speci�cally, the mean values of real-time electricity
prices, E[pri ], of the considered states (in cents per kWh) are as
follows: 10.41 in California, 3.73 in Washington, 5.87 in Oregon,
7.48 in Illinois, 5.86 in Georgia, 6.67 in Virginia 6.44 in Texas, 8.60
in Florida, 6.03 in North Carolina, and 5.49 in South Carolina. Since
electricity prices in long-term markets are usually much cheaper
than that of the real-time markets, we set the long-term prices such
that the ratio E[p

r
i ]

pli
= 2.5 for all results, except for Figure 9, where

the ratio is varied.
To simulate the uncertainties, the error distributions between

12-13 pm shown in Figure 4 are used to generate the samples of
renewable energy generation (PV generation and/or wind gener-
ation), workload, and electricity price. �e mean absolute errors
(MAE) of prediction errors for PV generation, wind generation,
electricity price, and workload demand are 45%, 65%, 40%, and 35%,
respectively. �e MAE are varied later to study the impacts of
prediction errors. Wind generation is used as the renewable energy
source by default. �e penetration of the renewable energy is �xed
at 50% of the averaged demand. We also vary the penetration of PV
and wind generation to investigate the impacts of the renewable
portfolio and penetration level.

Convergence of SGA. Although SGA is proved to eventually
converge to the optimal value of EP-LT, the convergence can be
slow in practice. �e convergence speed mainly depends on how
the step sizes are set. Stochastic approximation is known to have
high computational complexity due to the large numbers of itera-
tions and samples needed for each iteration. To reduce the number
of iterations, we use the step size update rule as �t = s

(S+t+1)� ,

where s and S are non-negative constants and 0.5 < �  1. �is
form ful�lls the requirement of Assumption 1. To speed up the
convergence of algorithm, each gradient component has its own
step-size, and the step-size is updated only if the gradient com-
ponent switches from negative to positive or vice versa. Figure
6 illustrates four gradient components (of total ten) and the long-
term objective function updated over iterations. As shown in the
�gure, gradient components, and the long-term objective F l (ql )
converge very quickly, i.e it is very close to the optimal value a�er
merely 20 iterations. In general, some gradient components rqli

may converge to positive values. In such cases, the optimal solution
has qli = 0.

Cost savings. We highlight the bene�t of our proposed system
by comparing with the following algorithms.

No long-term procurement or geographical load balancing (nLT-
nGLB): nLTnGLB does not participate in long-term markets, i.e.
q

l
i = 0, 8i 2 N , and the workload demand are forwarded to the
closest data centers, a.k.a., the nearest routing method. We assume
that the data centers activate all servers to minimize the queueing
delay, i.e.mi = Mi . �ough simple, this policy is still widely used
in practice.

Fixed long-term procurement without geographical load balancing
(fLTnGLB): Cloud providers purchase a �xed amount of electric-
ity ahead. We assume that the long-term procurement is 50% of
workload mean. Like nLTnGLB, it uses the nearest routing method
instead of GLB-RT.

No long-term procurement but with geographical load balancing
(nLT): In this algorithm, cloud providers do not purchase the energy
in long-term markets like nLTnGLB. However, they execute GLB-
RT to minimize the total cost in real-time.

Fixed long-term procurement geographical load balancing (fLT):
fLT buys a �xed amount of electricity in long-term markets same
as fLTnGLB, i.e., 50% of workload mean. In real-time markets, it
executes GLB-RT.

In addition to the baseline algorithms, we compare our algo-
rithms to Oracle Algorithm (OA). OA is an unrealizable algorithm
that is given to the absolute performance limit by assuming assumes
all realizations of renewable energy, workload, and electricity prices
are fully known apriori. Similarly to PA, the problem of long-term
procurement can then be solved e�ciently. �e cost of OA is mea-
sured by averaging its output over many realizations.

nLTnGLB fLTnGLB nLT fLT PA SGA OA
algorithms
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Figure 7: Cost comparison when � = 1 and 50 % renewable
penetration. �e proposed algorithms PA and SGA are very
close to the lower bound, OA and outperform the traditional
methods up to 44%.

Figure 7 compares the cost performance among our proposed
algorithms and the traditional algorithms. �e �gure highlights
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that our proposed algorithms PA and SGA save up to 44% com-
pared to other simpler algorithms, and are comparable to the oracle
algorithm (OA), the impractical lower bound. It also shows the
signi�cant bene�ts for cloud providers to participate long-term
markets. Surprisingly, the performance of PA is very close to that
of the SGA.

Why do our proposed algorithms perform so well? �e
intuition behind the small performance gaps between PA, SGA
and OA is the compensation of GLB-RT at real-time markets. In
particular, GLB-RT can utilize the available renewable energy and
cheap electricity to partially compensates for performance gap
caused by the prediction errors in long-term. More interestingly,
PA and SGA are noticeably aggressive in long-term markets as in
Figure 7. In addition, PA and SGA are even more aggressive than
OA. In fact, Lemma 4.3 allows PA, SGA, and OA to purchase a lot
of electricity in long-term markets, because the over-provisioned
energy can be used up to reduce queuing delay in real-time. �us,
there is the trade-o� between the energy costs and delay costs that
helps our proposed methods become close to OA.
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Figure 8: �e impact of delay on the proposed algorithms.

How does the trade-o� between energy costs and delay costs bene�t
our proposed algorithms? To answer this question, we vary the
constant factor � that weighs the delay costs relative to energy costs.
When � = 0, i.e., the delay costs are ignored, the cost breakdown
are shown in Figure 8a. �e performance gap between PA and
OA is 24% that is much larger than the 2% gap in Figure 7 (� = 1).
In this se�ing, SGA outperforms PA by 4%. We observe that PA
is more aggressive compared to SGA in long-term procurement.
Figure 8b shows the performance gaps of PA versus OA and PA
versus SGA with varying � . In this �gure, the x-axis shows a scaled
� , where a value of 1 corresponds to the default value. We note
that the performance gaps are signi�cant when � is small (< 0.25).
However, the gaps are very small when � is relatively large (� 0.5).

Sensitivity Analysis. �e capability of our proposed algo-
rithms depends on multiple impact factors, such as the ratio of
real-time price to long-term price, renewable penetration rates, and
prediction errors.

Impact of the ratio of real-time price to long-term price. We carry
out another study that quanti�es the impact of the ratio of real-time
prices to the long-term prices on our proposed algorithms as in
Figure 9. In this experiment, the long term prices are �xed, and
we scale the real-time prices. Figure 9a shows the performance
gaps of PA versus SGA and PA versus OA. In general, the gaps are
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Figure 9: �e impacts of long-term prices on the proposed
algorithms. �e gaps between the proposed algorithms and
OA are small at various ratios of real-time prices to long-
term prices.

small whatever the ratio is. Figure 9b illustrates the behaviors of
PA and SGA in long-term markets. SGA is more conservative than
PA when the ratio is small (< 2). When the real-time prices are as
cheap as the long-term prices, being more aggressive in long-term
actually results in higher �nancial risk to the cloud providers. In
contrast, SGA is more aggressive in long-term markets as the ratio
becomes larger than 2.

Impact of renewable energy. Renewable energy has been increas-
ingly used to power data centers. Hence, we investigate the impacts
of renewable energy integration on our energy procurement sys-
tem. We scale the penetration levels of renewable energy from 5%
to 95% of the total demand. We consider PV generation and wind
generation as two main sources of renewable energy.
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Figure 10: Impacts of renewable energy penetration levels
on long-term energy procurement. SGA becomes less ag-
gressive in the PV generation case than the wind generation
case compared to PA.

�e impacts of renewable energy on the behaviors of PA and
SGA are shown in Figure 10. Here, the x-axis represents the pene-
tration levels of renewable energy, and the y-axis is the ratio (%)
of total electricity purchased in long-term markets. PA performs
similarly in both cases because it is only based on the predicted
values. However, SGA is closer to PA in the PV generation case as
the penetration of renewable energy increases, yet becomes more
aggressive than PA in the wind generation case. �e reason lies in
the error distributions in Figure 4. While the prediction errors of PV
generation are concentrated on two peaks, the prediction errors of
wind generation are centered around only one peak (around �80%).

Impact of prediction errors. So far, we have worked with the
empirical (or ‘real’) prediction error distributions. We now study
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the dependence of the distribution of prediction errors on the per-
formance of our procurement system.
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Figure 11: Impacts of predictions on cost performance.

Figure 11a presents the cost of SGA under three di�erent er-
ror distributions, i.e. normal, ‘real, and generalized extreme value
(GEV) [12]. �e normal distribution is symmetric around its mean.
�e GEV distribution is asymmetric and widely used in risk man-
agement and �nance. We also consider the distribution of AR
prediction errors as the ‘real’ distribution. �e MAEs of each are
set at 35% for fair comparison. Figure 11a shows that the cost us-
ing normal distribution is the best among three error distributions
while GEV is the worst.

Figure 11b shows the cost of SGA with respect to di�erent MAEs
of ‘real’ distribution. As the prediction errors increase, the real-time
cost (real-time energy cost and delay cost) increase to compensate
for the mis-provisioning in long-term markets. Furthermore, the
total cost increases by 10% as the prediction errors increase from
15% to 75%.

8 CONCLUDING REMARKS
In this paper, we present a systematic study of optimal energy
procurement systems for geo-distributed data centers that utilize
multi-timescale electricity markets. �e contributions of this paper
are three-fold: (i) designing algorithms for long-term electricity
procurement in multi-timescale markets; (ii) analyzing long-term
prediction errors using real-world traces; and (iii) empirically eval-
uating the bene�ts of our proposed procurement systems. In partic-
ular, we proposed two algorithms, PA and SGA, both of which save
up to 44% of the energy procurement cost compared to traditional
algorithms that do not use long-term markets or geographical load
balancing. While SGA provably converges to an optimal solution,
PA surprisingly achieves a cost that is nearly optimal with much
less computing e�ort.

�ere are a number of interesting directions for future research
that can be motivated by our work. For example, generalizing our
model to include more complicated forward contracts that procure
energy that can be used over multiple time-slots is also another
challenging problem. Integrating storage capabilities, e.g., ba�eries
and/or thermal storage, into the energy procurement optimization
of multi-timescale markets is another challenging direction. �e

further research on how to optimally utilize multi-timescale mar-
kets will have high potential to greatly impact the cost e�ciency
of Internet-scale services.
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A PROOFS FOR SECTION 3
A.1 Proof of�eorem 4.1
To prove �eorem 4.1, we �rst show that the real-time objective is
jointly convex with respect to (ql ,m,�).

L���� A.1. F̃ r as de�ned in (4) is jointly convex with respect to
(ql ,m,�) over RN+ ⇥C (Lr ).

P����. We rewrite

F̃

r (ql ,m,�,pr ,wr ) =
NX

i=1
p

l
i [e1�i + e0mi �wr

i � qli ]+

+

NX

i=1

�X

j=1
�jihi j (mi , �i ). (9)

Since e1�i + e0mi � wr
i � q

l
i is an a�ne function, and [·]+ is

convex and non-decreasing,
PN
i=1 p

l
i [e1�i + e0mi � wr

i � qli ]+ is
jointly convex with respect to (ql ,m,�).

Since �i jhi j (mi , �i ) is jointly convex with respect to (m,�) , F̃ r

is jointly convex with respect to (ql ,m,�) because the summation
of convex functions are convex. ⇤

P���� �� T������ 4.1. From Lemma A.1, we know that the
real time objective function F̃

r (ql ,m,�,pr ,wr ) is jointly convex
with respect to (ql ,m,�). It then follows that

F

⇤r (ql ,pr ,Lr ,wr ) = min
(m,�)2C (Lr )

F̃

r (ql ,m,�,pr ,wr )

is convex with respect to ql (see [8]). Finally, since the expectation
operation preserves convexity, we conclude that F l (ql ) is convex
with respect to ql . ⇤

A.2 Proof of�eorem 4.2
�is section is devoted to the proof of �eorem 4.2. To prove
�eorem 4.2, it su�ces to show that

@E
f
F ⇤r (ql ,pr ,Lr ,w r )

g
@qli

= E

"
@F ⇤r (ql ,pr ,Lr ,w r )

@qli

#

= �E
f
�i (ql ,pr ,Lr ,wr )

g
.

(10)

�e �rst step is to prove that the Lagrange multiplier of GLB-RT
corresponding to the constraint (3f) is unique.

L���� A.2. With probability 1, GLB-RT has a unique Lagrange
multiplier, denoted �i (ql ,pr ,Lr ,wr ), corresponding to the constraint
(3f).

P����. In this proof, for notational simplicity, we suppress
the dependence of the primal and dual solutions of GLB-RT on
(ql ,pr ,Lr ,wr ). Consider a primal solution of GLB-RT (qr ,m,�)
withm > 0. Such a solution exists with probability 1, sincewr > 0
with probability 1.

Now any dual solution must satisfy the KKT conditions. �is
implies the following conditions. (Since the constraint �i  mi µi
is never binding, the corresponding Lagrange multiplier �i = 0 and
does not feature in the following.)

@
PN
i=1

P�
j=1 �jihi j (mi , �i )

@mi
+ �̄i � �i + �ie0 + �ie0 = 0 (11)

�̄i (mi �Mi ) = 0; �̄i � 0,mi  Mi (12)
�imi = 0;�i � 0,mi � 0 (13)
p

r
i � �i � �i = 0 (14)
�iq

r
i = 0;�i � 0,qri � 0 (15)

�i (�qri + e1�i + e0mi �wr
i � qli ) = 0; (16)

�i � 0,qri � e1�i + e0mi �wr
i � qli (17)

�i (�Di + e1�i + e0mi ) = 0; (18)
�i � 0,Di � e1�i + e0mi (19)

We now argue that �i is unique for all i . Consider the following
two cases.
Case 1: wr

i + q
l
i > Di . In this case, it follows that e1�i + e0mi <

w

r
i + q

l
i + q

r
i . Using (16), we conclude that �i = 0.

Case 2: wr
i + q

l
i < Di . Here we consider two sub-cases.

Case 2a:mi = Mi . In this case, it follows thatqri > 0,which implies
that �i = 0 (by (15)). �us, we have, using (14), that �i = pri .
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Case 2b: mi < Mi . In this case, since mi 2 (0,Mi ), we have
�̄i = �i = 0 (by (12) and (13)). �us, from (11), we have

�i = �
@
PN
i=1

P�
j=1 �jihi j (mi , �i )

e0@mi
� �i . (20)

Because it is assumed that dri = Di only if allMi servers are active
and run at their peak power and in Case 2bmi < Mi , �i = 0.

Since the eventwr
i +q

l
i = Di has zero probability, we may ignore

this case. �is completes the proof. ⇤

Given Lemma A.2, it follows from standard sensitivity analysis
in convex optimization (see Section 6.5.3 and 6.5.4 in [7]) that

@F ⇤r (ql ,pr ,Lr ,wr )

@qli
= ��i (ql ,pr ,Lr ,wr ). (21)

�is proves the second equality in (10). �us, to complete the proof
of �eorem 4.2, it only remains to justify the interchange of the
partial derivative and the expectation in the �rst equality. We justify
this interchange by invoking the dominated convergence theorem
as follows.

Let ei denote a column vector in RN , with 1 in the ith entry and
0 elsewhere.

L���� A.3. For any � , 0 and i 2 N ,
������
F

⇤r (ql + �ei ,pr ,Lr ,wr ) � F ⇤r (ql ,pr ,Lr ,wr )

�

������  p

r
i .

P����. It is easy to see that

F

⇤r (ql ,pr ,Lr ,wr )  �p

r
i + F

⇤r (ql + �ei ,pr ,Lr ,wr ).

�e statement of Lemma A.3 follows from the fact that the function
F

⇤r (ql + �ei ,pr ,Lr ,wr ) is non-increasing with respect to � . ⇤

Since E
f
p

r
i

g
< 1, it follows from the dominated convergence

theorem that

E
266664 lim�!0

F

⇤r (ql + �ei ,pr ,Lr ,wr ) � F ⇤r (ql ,pr ,Lr ,wr )

�

377775
= lim

�!0

E
f
F

⇤r (ql + �ei ,pr ,Lr ,wr )
g
� E

f
F

⇤r (ql ,pr ,Lr ,wr )
g

�

.

�is proves the �rst equality in (10), and completes the proof of the
theorem.

A.3 Proof of Lemma 4.3
We assume there an optimal solution S such that �i > 0, and
e1�i + e0mi < Di . �i = 0 or e1�i + e0mi = 0 is ignored because it
is equivalent to shu�ing down data center i . Here, �i = �i = 0.

If wr
i + q

l
i < Di and d

r
i < w

r
i + q

l
i , �i = 0. �i = �i = 0

results in @�jihi j (mi ,�i )
@mi

becomes zero as (20). �is contradicts
the assumption that �i jhi j (mi , �i ) is strictly decreasing inmi . So,
d

r
i � w

r
i + q

l
i ifw

r
i + q

l
i < Di .

Ifwr
i +q

l
i � Di , we assume that dri < Di . �i = �i = 0 again leads

to the contradiction to the assumption. So, dri = Di ifwr
i +q

l
i � Di .

B CONVERGENCE OF SGA
�is section is devoted to the proof of �eorem 6.1. Invoking �eo-
rem 2.1 in [23], the almost sure convergence of the iterates of SGA
to the set of optimal solutions of EP-LT holds if the following two
conditions are satis�ed.

(1) rF l : RN+ ! RN is continuous.
(2) supql 2RN+ E

f
(�i (ql ,pr ,Lr ,wr ))2

g
< 1.

Condition (1) above holds since the gradient of a di�erentiable
convex function is convex; see �eorem 25.5 in [37]. Condition (2)
holds since

�i (q
l ,pr ,Lr ,wr )  p

r
i

(see (21) and Lemma A.3). �is completes the proof.
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