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1. INTRODUCTION
One of the major issues with the integration of renewable

energy sources into the power grid is the increased uncer-
tainty and variability that they bring [1]. The limited ca-
pability to accurately predict this variability makes it chal-
lenging for the load serving entities (LSEs) to respond to
it [3]. If this variability is not sufficiently addressed, it will
limit the further penetration of renewables into the grid and
even result in blackouts [4]. Various approaches have been
implemented or proposed to address this issue. These in-
clude improving renewable generation forecast, aggregating
diverse renewable sources, fast-responding reserve genera-
tors, energy storage, and demand response (DR), among
others. Compared to energy storage, DR has advantages
to provide reserves to the LSEs in a cost-effective and envi-
ronmentally friendly way [11, 16].

DR programs work by changing customers’ loads when the
power grid experiences a contingency such as a mismatch be-
tween supply and demand. The decision that must be made
by DR programs is how much load demand each customer
should change. Uncertainties from both the customer-side
and LSE-side make designing algorithms for DR a major
challenge. LSEs make predictions about the net load de-
mand and purchase capacity to dispatch controllable supply
accordingly, but they do not know the true mismatch be-
tween supply and demand until the time arrives. On the
other hand, customers who are accustomed to having elec-
tricity supply on demand are not be able to accurately es-
timate how much disutility a future change in load demand
would bring them. These uncertainties mean that the LSE
does not know how exactly how much aggregate DR it will
need and the customers do not know how much change they
will be willing to provide.

Also for large-scale algorithms with many decisions such
as DR programs, distributed algorithm design is important.
As networks grow, the increased communication overhead
required for a centralized decision maker becomes infeasi-
ble. More importantly, privacy requirements may not allow
a central entity to know the objectives and constraints of all
the users. This is especially true in the case of deregulated
power markets [8]. Distributing algorithms is a major chal-
lenge for DR because the LSE needs information about the
customers’ decisions.

This paper makes the following main contributions: First,
we model the social cost minimization problem using stochas-
tic optimization that jointly optimizes DR participation and
capacity planning (Section 2). Second, we propose a simple
contract between customers and the LSE, and design a dis-
tributed algorithm to find the optimal contract parameters
(Section 3). Third, we show that the distributed algorithm
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converges quickly with a real world trace (Section 4). The
major difference in our work as compared to existing work
is that we design a contract between each customer and the
LSE that adjusts the customers’ loads according to real-time
system parameters in contrast to robust real-time pricing
strategies, e.g [10, 12, 15].

2. MODEL
We consider a two-stage decision problem in which an

LSE first purchases capacity to handle an unknown amount
of supply-demand mismatch, and second procures a total
amount of load reduction from a set of customers V after
the supply-demand mismatch is revealed. Note that we only
frame DR as a load reduction for ease of explanation. Our
approach is general enough for DR to be framed as any
change of load demand. We ignore the power network con-
straints in this paper. However, our model and algorithms
can be extended with extra effort to incorporate those power
network constraints.
Customers

Let di be the actual power demand and d̂i be the predicted
power demand of customer i ∈ V for a particular timeslot.

Therefore, we denote δi := di− d̂i as the customer demand’s
mismatch and model it as a random variable. In real-time,

the customer observes its own real power demand di = d̂i+δi
in the absence of a DR program and decides xi under a par-
ticular DR program as the amount of demand reduction from
di. So the actual power consumption under a DR program
becomes di − xi.

To model the loss of utility caused by the reduction in
power consumption xi from the original demand di, we as-
sume there is a cost function Ci(xi). The function is in-
herently different for different timeslots and may not be
known until at (or just before) the time of consumption.
The uncertainty in this function can be modeled by using
a random variable that parameterizes Ci(xi), (e.g. ai in

Ci(xi) = aix
2
i ). We use the function Ĉi(xi) to represent its

estimated cost function.
Load Serving Entity

We consider the general case where the LSE has volatile
renewable energy generation and is responsible for handling
any supply-demand mismatch with dispatchable resources.
The uncertainty from the renewables and the customers’ de-
mands combine to form the aggregate mismatch D which
is modeled as a random variable. Therefore, after the cus-
tomers apply their load reductions, the LSE has D −

∑
i xi

remaining mismatch to manage.
For any remaining mismatch, the LSE has to bear the cost

denoted by the penalty function Cg(D−
∑
i xi). Specifically,

this is the cost imposed on the LSE to close the gap through
actions such as employing fast responding reserves or grid
energy storage.

In order for the LSE to tolerate the mismatch and prevent



blackouts, the LSE must purchase long-term energy storage
or reserves in some forward market denoted by κ. Denote
Ccap(κ) as the cost of the energy storage/reserve capacity κ
amortized to a single timeslot. This gives us the mismatch
constraint

−κ ≤ D −
∑
i∈V

xi ≤ κ (1)

so that the LSE has the ability to handle any remaining
mismatch.
Optimization Problem

The goal is to simultaneously decide the capacity plan-
ning κ and a practical DR policy x(D, δ) to minimize the
expected social cost caused by a random aggregate supply-
demand mismatch D (which captures mismatches from both
the generation side and the load side).

min
κ,x(D,δ)

Ccap(κ)

+ED,δ,Ci(·)

[∑
i

Ci(xi(D, δi)) + Cg

(
D −

∑
i

xi(D, δi)

)]

s.t. max
D,δ

{
D −

∑
i

xi(D, δi)

}
≤ κ (2a)

min
D,δ

{
D −

∑
i

xi(D, δi)

}
≥ −κ. (2b)

The expectation is taken with respect to the aggregate mis-
match D, individual customer mismatches δi, and the cus-
tomer cost functions Ci(·) since they are not known before
DR operation. We note that (2a) and (2b) are worst-case
constraints so that the remaining mismatch does not go be-
yond the purchased capacity.

We make the following mild assumptions. We assume that
the cost functions are convex. The convexity assumption on
the customer-side is consistent with the concavity assump-
tion of customer utility functions as was done in [14]. A
simple but widely used example is the quadratic function,
i.e., Ci(xi) = aix

2
i [17]. On the LSE-side, Cg(·) can also be

a quadratic function [13], and Ck(κ) can be linear. Also,
the randomness in a customer’s cost function Ci(·) and the
mismatch D are assumed to both be stationary. This as-
sumption is reasonable since the randomness in D is due
to the prediction error of the customers’ load demands and
renewable energy supply.

The two main challenges of Problem (2) are (i) deciding
the optimal capacity κ before operating the DR policy, and
(ii) optimizing an online DR policy.

3. POLICY DESIGN
Linear contract
Motivated by the desire to find a simple DR policy x(D, δ)
that preserves convexity and can be decided jointly with ca-
pacity, we focus on a simple but powerful linear contract that
is a function of the aggregate and individual mismatches:

xi(D, δi) = αiD + βiδi + γi (3)

which is the optimal form of a DR policy when the cost
functions are quadratic as shown in our extended version [9].

This contract combines the global aggregate mismatch D
with each customer’s local mismatch δi to decide what that
customer’s change in demand should be. Intuitively, there
are three components: αiD implies each customer shares
some (predefined) fraction of the global mismatch D; βiδi
means customer i may need to take additional responsibility
for the mismatch due to his own demand fluctuation and
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Figure 1: Convergence of the distributed algorithm.
Baseline is to optimize DR after purchasing enough
capacity to close the mismatch.

estimation error; finally, γi, the constant part, can help when
the random variables E[D] and/or E[δi] is nonzero. Then
the LSE needs to solve (2) with (3) to obtain the optimal
parameters for the linear contract, i.e., α,β,γ, as well as the
optimal capacity κ. We have the following theorem proved
in [9]:

Theorem 1. Problem (2) with the linear contract (3) is
a convex optimization problem.

Distributed algorithm
In most cases, the LSE’s information on the customers’ cost
functions is much less accurate than the customers them-
selves’. This can also be due to privacy concerns. To handle
this, we design a distributed algorithm so that the LSE does
not need the information of the customer cost functions.

First, we introduce and substitute (ui, vi, wi) as the cus-
tomer’s copy of (αi, βi, γi) in each of their estimated cost

functions Ĉi(·) to get

min
α,β,γ,u,v,w,κ

Ccap (κ) +
∑
i∈V

Eδ,δr
[
Ĉi(uiD + viδi + wi)

]
+ Eδ,δr

[
Cg

(∑
i∈V

(D −
∑
i∈V

(αiD + βiδi + γi)

)]
s.t. (2a), (2b) (4a)

ui = αi, vi = βi, wi = γi, i ∈ V (4b)

Problem (4) can be split where each customer controls its
own (ui, vi, wi) and the LSE controls (α,β,γ) by using dual
decomposition of constraint (4b). Let (πi, λi, µi) be the dual
prices for each customer corresponding to constraint (4b).
Therefore πiui + λivi + µiwi is the total payment to cus-
tomer i for following the linear demand response contract.
Accordingly, (4) is decomposed into the individual customer
optimization problem

min
ui,vi,wi

ED,δi
[
Ĉi(uiD + viδi + wi)

]
− πiui − λivi − µiwi,

(5)

and the LSE’s optimization problem among all the customers

min
α,β,γ,κ

Ccap (κ) +
∑
i∈V

(πiαi + λiβi + µiγi)

+ ED,δ

[
Cg

(
D −

∑
i∈V

(αiD + βiδi + γi)

)]
(6)

s.t. (2a), (2b).

Problems (5) and (6) can be solved with standard stochas-
tic optimization techniques such as the Stochastic Subgradi-
ent Method with Monte Carlo sampling [7]. To solve the
decomposed problems, we must ensure the customers’ and
LSE’s decisions satisfy (4b). We achieve this by applying



the Subgradient Method (see [6] Chapter 6) to obtain the
optimal dual prices in the following

Distributed Algorithm:

0. Initialization: (α,β,γ,u,v,w,π,λ,µ) := 0.

1. LSE: receives (ui, vi, wi) from each customer i ∈ V.

• Solves Problem (6) and updates (α,β,γ) with the
optimal solution.

• Updates the stepsize:

η =
ζ/k

||(α,β,γ)− (u,v,w)||2
(7)

where ζ is a small constant and k is the iteration
number.

• Updates the dual prices, ∀i ∈ V:

(πi, λi, µi) := (πi, λi, µi) + η ((αi, βi, γi) − (ui, vi, wi)) (8)

• Sends (πi, λi, µi) to the each customer respectively.

2. Customer i ∈ V: receives (πi, λi, µi) from LSE.

• Solves Problem (5) and updates (ui, vi, wi) with op-
timal solution.
• Sends (ui, vi, wi) to the LSE.

3. Repeat Steps 1-2 until ||(α,β,γ)− (u,v,w)||2 ≤ ε where
ε is the tolerance on magnitude of the subgradient.

When the LSE signals the customers for DR and they re-
spond accordingly, each customer is paid πiui + λivi + µiwi
by the LSE. We now establish the convergence and optimal-
ity for the proposed distributed algorithm proved in [9]:

Theorem 2. The distributed algorithm’s best dual prices
converge to the optimal dual prices of Problem (4).

4. PERFORMANCE EVALUATION
We aim to use realistic parameters in the experimental

setup to evaluate the convergence of our distributed algo-
rithm. We model an LSE supplying power to 300 customers
for a demand response timeslot that is five minutes long and
observe its social cost over a year long operation. The LSE
must first purchase capacity for which we model the cost
as a linear function cκ with a cost parameter c = $1/kW-
mo. The generation cost function for the LSE is modeled

as a quadratic function A
(
D −

∑
i xi
)2

with the parameter

A = $0.01/122/kW2. For this cost function setting, a de-
viation of 60kW for five minutes is equivalent to an energy
cost of $0.05/kWh and matches the intuition that larger mis-
matches are increasingly more expensive to manage. Each
customer has a particular demand of load. To model this
we utilize the traces obtained from the UMass Trace Reposi-
tory which give very granular load measurements from three
homes [5]. We model the cost incurred by each customer to
change its consumption as a quadratic cost aix

2
i with the pa-

rameter ai ∈ $[1, 10]/122kW2. Under these settings, a con-
sumption decrease of 0.3kW for five minutes would cost the
customer an energy price equivalent to $0.025-0.25/kWh. To
generate customer cost uncertainties we randomly choose âi
from a bounded normal distribution for each customer’s esti-
mated cost function. Renewable generation is incorporated
into our simulations by using the ISO-NE’s data on hourly
wind power production for the same dates as the UMass
data [2]. The amount of wind capacity is scaled to 100kW.
The historical data sets for each customer were generated
from the available trace data (Homes A,B,C and ISO-NE
wind production). They were made by bootstrapping 100
customers from each of the UMass Homes A/B/C. We also
do this for the ISO-NE wind data which is first normalized by
the maximum power output so that we can scale wind power
accordingly. Sampling from these historical sets is how the
expectation is evaluated in Equations (5) and (6).

Convergence of the distributed algorithm.
We consider the convergence of our distributed algorithm.
Figure 1(a) illustrates that the social cost of the distributed
algorithm converges quickly to that of the centralized al-
gorithm and Figure 1(b) gives the trajectory of the total
fraction of aggregate mismatch absorbed by all of the cus-
tomers. It validates the convergence analysis for the dis-
tributed algorithm. For the parameters, even if we start with
αi = 0 : ∀i ∈ V, it quickly converges to the optimal αi and
stays there.
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