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ABSTRACT

Demand response (DR) is a cost-effective and environmen-
tally friendly approach for mitigating the uncertainties in re-
newable energy integration by taking advantage of the flex-
ibility of the customers’ demand. Existing DR programs,
however, suffer from the inflexibility of commitment levels.
In particular, these programs can be split into two classes de-
pending on whether customers are fully committed or fully
voluntary to provide demand response. Full commitment
makes customers reluctant to participate, while the load
serving entity (LSE) cannot rely on voluntary participation
for reliability and dispatchability considerations. This paper
proposes a generalized DR framework called Flexible Com-
mitment Demand Response (FCDR) to allow for explicit
choices of the level of commitment. We perform numerical
simulations to demonstrate that the optimal level of commit-
ment in FCDR brings in significant (around 50%) social cost
reductions, consistently under various settings. This benefits
both the LSE and customers simultaneously. Further, lower
cost and higher levels of commitment can be simultaneously
achieved with the optimal level of DR commitment.

1. INTRODUCTION

One of the major issues with the integration of renewable
energy sources into the power grid is the increased variabil-
ity that they bring [3]. Additionally, the limited capability
to accurately predict this variability makes it challenging for
the load serving entities (LSEs) to respond to it [6]. If this
variability is not sufficiently addressed, it will limit the fur-
ther penetration of renewables into the grid and even result
in blackouts [5].

Various approaches have been implemented or proposed to
address this issue. These include improving renewable gen-
eration forecast [18], aggregating diverse renewable sources
[23], fast-responding reserve generators, energy storage [9,
11], and demand response (DR) [21], among others. In par-
ticular, in 2013, the California state legislature enforced a
solution by passing a bill that requires 1,325 MW of grid
energy storage by 2020 [17, 20]. In order for this solution to
be cost-effective, the price of storage needs to be within the
range of $700-750/kWh. However, in 2013 when the law was
passed, prices were about three times that amount [19].

Compared to energy storage, demand response has advan-
tages to provide reserves to the LSEs in a cost-effective and
environmentally friendly way [13, 21]. Despite the great po-
tential, the increase in the amount of DR is much slower
than that of renewable integration [22], partially evidenced
by the California’s move towards more grid-level energy stor-
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age. There are multiple reasons about this, but the level of
DR commitment is an important factor.

Roughly speaking, there are two types of DR programs
based on how much commitment customers need to make in
the electric load reduction. In the first type, customers are
required to make full commitment in load reduction, e.g.,
regulations service [15], capacity bidding [10]. Accordingly,
a customer takes all the responsibilities of managing the
risks/uncertainties in meeting its own commitment. Since
such a full commitment is often costly, a higher payment is
necessary to incentivize a customer to participate in DR pro-
grams than what are normally used in practice. In the latter
type, customers do not need to make any commitments, and
therefore are willing to participate in DR programs. Exam-
ples include emergency demand response programs [16] and
coincident peak pricing [1]. The drawback, however, is that
from LSE’s perspective this sort of “voluntary” demand re-
sponse is not reliable or sufficiently dispatchable.

This actually raises the following fundamental question:
what should be the optimal level of DR commit-
ment? This paper serves as a first step towards answering
this question by making the following two main contribu-
tions:

(i) The design of the Flexible Commitment Demand Re-
sponse framework: We propose a generalized framework for
demand response programs called Flexible Commitment De-
mand Response (FCDR). Under FCDR, we explicitly allow
an LSE to specify her requirement on the level of commit-
ment from the customers by setting the value of a parameter
p. The two types of DR programs mentioned above are spe-
cial cases of the proposed FCDR with p = 1 and p = 0,
respectively. We include the details of FCDR in Section 2.2.

(i) Performance evaluations of FCDR: We conduct nu-
merical experiments to illustrate the benefits of allowing the
possibility of different levels of DR, commitment. Our study
yields the following key insights:

e The optimal level of commitment brings in a significant
social cost reduction. For instance in our case studies, we
achieve a consistent decrease of around 50%. Moreover,
this benefits LSE and customers at the same time, so that
both sides are incentivized to stay in the program.

e While lower price and higher levels of DR commitment are
usually considered to be conflicting with each other, our
results highlight the (somewhat surprising) opportunity to
achieve both with the optimal level of commitment.

e We provide some insights about who should decide the
level of commitment p. The result is particularly exciting
as the optimal decision of LSE is near the social optimum.
This means that we can rely on the LSE’s (selfish/rational)
decision to reach the social optimum.



e The optimal level of commitment increases with larger DR
amount, and varies based on the customers’ demand char-
acteristics.

The most related work in literature is probably [14]. [14]
studies the program where the LSE generates random num-
bers to decide whether a particular customer is required to
provide the peak reduction.

2. FLEXIBLE COMMITMENT DEMAND
RESPONSE FRAMEWORK

We start by modeling the LSE and customers, and then
propose the flexible commitment demand response program.

2.1 Modeling the system

We consider a system with one LSE and a set of customers
denoted by N.

Customers

For customer ¢ € NV, her electricity demand is within a range
[l;, hi]. We employ a random variable Y; to represent her
demand at a future time since she may not know it exactly
beforehand due to uncertainties. The probability density
function of Y; is denoted by f;(y). Although future demand
may depend on other factors (e.g. time of day, weather), we
leave it as general as possible to allow the framework to be
tailored for various statistical models.

In the current operation of the power grid, it is possible
that future demand may be correlated with the LSE’s need
for DR but our own data analysis shows this correlation to
be weak at best (cf. Figure 2(c)). Additionally as renewable
energy penetration increases, it will add more uncertainty
into the future supply. This will result in the correlation
being further weakened, e.g. make DR necessary at non-peak
hours [12]. For simplicity, we model the future demand as
an independent random variable instead of conditioning on
the LSE’s DR demand. However, our model can be adapted
to incorporate this dependency.

For customer i, we define its demand reduction as x; =
yi — 9., where y; is what her demand would realize without
DR, and v is her actual demand after performing DR. The
internal cost for customer ¢ to reduce its demand by x; > 0 is
modeled by a function C;(z;) with a nondecreasing nonnega-
tive marginal cost. Specifically in our numerical simulations,
we consider the one-sided quadratic customer cost function:

otherwise

2
Ci(w:) = {” (1)
0,

where the constant ¢; > 0 represents the customer’s increas-
ing rate of disutility from load reduction. We leave it up for
future work to study the effects of different customer cost
function structures.

The customer’s total cost is the difference between the
internal cost and payment pz; received from the LSE (as
explained in the following subsection):

Ci(x:) — px; (2)

The load serving entity

We assume that the LSE has a targeted expected aggregate
demand reduction D in total from all the customers. In order
to reach this target, the LSE incentivizes the customers with
payment. Specifically, the LSE sets a price p and if customer
i provides z; amount of demand response, she gets paid px;.
Note here z; is normally a non-decreasing function of p.

In many cases, the realized DR amount Zl x; is different

from D. The LSE incurs a cost G (D >, xl) for managing

the difference. In our numerical simulations we use a one-
sided quadratic cost function:

G <D - ZI> _ {ng -3 @),

where a > 0 is a constant that represents the increasing
cost rate of coping with the mismatch. Our model is general
enough to incorporate other cost functions.

The LSE’s total cost is the summation of the mismatch
cost and the payment given to all the customers for their
individual reductions:

G<D—in> +pri. (4)

In order to model the total cost to the society, we simply
sum the total cost of the individual customers and the LSE’s
total cost and thus the payments cancel:

G (DZ:M) +ZCZ(:EZ) (5)

2.2 The FCDR framework

The Flexible Commitment Demand Response framework
consists of two key components: one parameter p (level of
commitment), and one structural requirement for customers
specified by a threshold parameter, 3!, for customer i. The
proposed FCDR requires customer ¢ to reduce her demand to
a level no higher than y! with probability no less than 1 — p.
In other words, the LSE allows the customers to violate the
commitment of demand reduction to y! with probability up
to 1 — p when reductions may be too severe for the customer
(see the peak load levels in Figure 1(b)). This explains the
reason why p is called the level of commitment. Intuitively,
as we increase p, the customer has less leeway to miss her
commitment. p = 1 implies a full commitment and p = 0 im-
plies complete voluntariness. We assume that, after agreeing
to some p, the customers must meet this probabilistic com-
mitment level. This can be enforced with a very high penalty
otherwise.

Under the FCDR framework, the average amount of DR is
calculated as the effective demand reduction. Specifically, it
is the expected difference between unaffected desired demand
(baseline) Y; and demand after reduction Y, calculated as
follows:

otherwise

3)

Elz:) = E[Y; — Y{] (6)

Note that in practice the LSE can combine the demand re-
sponses from multiple (heterogenous) customers to mitigate
the randomness of each individual’s flexible commitment de-
mand response. Our data analysis shows that the load de-
mands of individual customers are only weakly correlated
(cf. Figure 1(c)).

2.3 Decision making of LSE and customers
Under the FCDR framework, we consider that the LSE
determines the price p and the level of commitment p, and
each customer i decides its ¢! '. This way, customer 4 is
given the freedom to not participate in DR by choosing its

yi = hi.

Customers

Each customer makes the load level decision Y} as well as y!
to minimize her expected total cost (2) while fulfilling the

"Whether the LSE or the customers should decide 4! is a
future direction.
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Figure 1: For Homes A, B, and C: (a) Load (kW) trace in five-minute intervals from May 6-8, 2012, (b)
Cumulative distribution of the five-minute loads (kW) of the 33 days along with the means (dashed lines).
(c) Heatmap showing the correlation coefficient matrix for one day of loads from 395 buildings.

level of commitment p:

min By, [Ci(Y: = ¥/) - p(Y¥; = )] ™)
i, Y/
s.t. Pr(Y{ <yl)>p. (8)

Under full commitment (p = 1), if the customer’s realized
desired demand is Y; > g, then the customer must reduce
her demand by Y; — y!. But what should the customer
decide if she is given the chance to miss the commit-
ted demand response by a probability 1 — p?

Customer i’s optimal choice of y;: The customer mini-
mizes its cost by avoiding events that would achieve the high-
est costs. Since the customer i’s cost of reducing demand is
a function with a nondecreasing nonnegative marginal cost
in the amount demand reduction, it would be best to not
reduce load demand when y; — y! is large and only reduce
demand when y; —y! is low. Specifically, we proved that (the
details are omitted due to space limit) there exists a thresh-
old y;* such that when Y; > y;’, then the customer would
decide not to reduce her demand and otherwise reduce to ..
The customer must also make sure that the chosen thresh-
old y;* does not violate her commitment obligation; thus, the
requirement of p (8) simply becomes a lower bound on y;':

yi' > F; ' (p) 9)

where F;!(p) is the inverse cumulative distribution function
of Y;. This redefines problem (7), (8) to be based on only
choosing its lower and upper thresholds. Since the load is
reduced only when Y; € (3, y%), the customer optimization
problem becomes:

;P:ﬁ fyyi (Ci(t —yb) —p(t — b)) fi(t)dt (10)
such that (9) is satisfied.

It will be shown later that (10) is not convex, and the
customer can use an exhaustive search on deciding y, and
yi. Although this naive algorithm has a quadratic time com-
plexity, one thousand points in each decision variable for a
residential customer who has a 0-10kW load can give 0.01kW
precision. This is good enough for control purpose.

The load serving entity

The LSE decides the price p and the commitment level p to
minimize its expected total cost (4):

min By [G(D =3, zi(p, p, Ya)) +p X mi(p, p, Ya)] (11)

where Y = {Y;}ien, and x;(p, p, Y:) are functions that de-
pend on how each customer behaves toward p, p and their
desired demand Y;, as fully characterized above. Note that
although the uncertainty of Y; is not explicitly stated in the
objective function, it is implicitly taken into account when
taking the expectation of G(-).

The LSE can decide the price p and commitment level p
by exhaustive search since price has limited granularity and
the shape of the cost function (11) is quite smooth around
the optimal commitment level (see Fig. 3(b)), which allows
moderate precision to be sufficient.

3. DATA ANALYSIS

3.1 Customer Loads

We use the Smart™ Data Set obtained from the University
of Massachusetts Trace Repository [8]. The specific data we
use is the load data from three different homes located in
Western Massachusetts given in one-second intervals from
33 days between May 1, 2012 through June 11, 2012.We
average them into five-minute intervals and use these for our
trace-based simulations. A concurrent three day sample of
the three homes is given in Figure 1(a), which shows peak
loads are non-overlapping in many cases.

Figure 1(b) displays the empirical cumulative distribution
function of the three homes over the 33 days along with their
means. The large peak-to-mean ratios indicate the potential
benefit that a reduced commitment level for DR would bring
for a customer.

Customers’ loads are only weakly correlated, if at all. The
northwest corner of Figure 2(c) shows a heatmap of the corre-
lation matrix between the three homes which shows virtually
little correlation. In addition to the three homes, the Univer-
sity of Massachusetts Trace Repository [8] provides the loads
of 443 buildings for one complete day in one-second intervals
which we averaged into five-minute intervals. A heatmap of
the correlation matrix between 395 of the buildings is shown
in Figure 1(c) which gives evidence that most customers have
loads which are only weakly correlated.

3.2 Load Serving Entity

We use the following data from the ISO New England for
the Western Massachusetts load zone [7]. The specific data is
given in one-hour intervals of the real-time load, day-ahead
market load demand, and the real-time price for the same
days as the previously described customer data (Homes A, B,
and C). We calculate the real-time load mismatch of supply
and demand as the difference between the real-time load and
day-ahead market provisioned load. Figure 2(a) displays a
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load mismatch of ISO-NE, and real-time price.

one week sample of the load mismatch and its corresponding
real-time price. The southeast corner of Figure 2(c) shows
that they are weakly correlated over the sampled 33 days.
The empirical cumulative distribution functions of the load
mismatch and the real-time price for the 33 days are shown
in Figure 2(b). In particular, the peak-to-mean ratio of the
real-time price is 10 which indicates that DR can be ex-
tremely valuable for an LSE.

4. NUMERICAL RESULTS

4.1 Setup

We simulate a system with one LSE and 1,000 homoge-
neous customers. For each customer, her demand has the
same probability density function. The empirical distribu-
tion functions used for three different simulations are from
Homes A, B, and C in the previous section (cf. Figure
1(b)) [8]. The cost of reducing her demand is modeled as
a one-sided quadratic function (1) with ¢; = $1/(kWh)?.

The goal of the LSE is to obtain a certain aggregated
amount (e.g. 40kWh) of demand reduction from the 1000
customers (resulting in 0.04kWh) for a given five-minute
timeslot. Recall the average demand of a customer is 1kW [2],
which means the reduction is about 50% given the five-
minute time frame. The LSE faces a penalty of not meeting
the aggregated DR goal, modeled as another quadratic cost
function in (3) with a = $0.002/(kWh)?.

Since the functions are quite complicated and non-convex
as we can see later in the results, both the LSE and customers
use exhaustive search to determine their decision variables.

4.2 Economic benefit of FCDR

The LSE performs an exhaustive search over p and p to
minimize its cost (11). For each pair of p and p, each cus-
tomer responds with an amount of FCDR that minimizes
its own cost. To observe the impact of different commit-
ment levels p in reducing costs, we plot in Figures 3(a), 3(b)
and 3(c) the costs to the society (i.e., the LSE plus the cus-
tomers), the LSE, and an individual customer, as a function
of p. These costs are normalized by the cost with a fully
committed DR program, namely, p = 1. To understand the
inner working of FCDR, we further plot the total expected
DR and the optimal price chosen by the LSE as a function
p in Figures 3(d) and 3(e). We make the following observa-
tions:

e With the optimal level of commitment p, the cost to the

society is significantly reduced from that with a p close to
1. Indeed, from Figure 3(e), when p is close to 1, the cost
of performing DR by the customers increases significantly,
so that a much higher price is needed to incentivize them
to supply the desired amount of DR. In the extreme case
with p = 1, the price to incentivize the customers can
become so high that the LSE would instead resort to other
expensive alternatives, characterized by its cost function
(3). This is evidenced in Figure 3(d), where with p ~ 1
the extracted DR falls to zero, meaning that the LSE has
turned away from using DR.

e The optimal level of commitment p leads to a lower cost
to the society than a fully voluntary DR (i.e., p = 0). This
is because the requirement of p restricts the action space
of the customers in a way that benefits the society. In
particular, a higher level of commitment p decreases the
uncertainty of the extracted DR.

e There is a discontinuity in Figures 3(a), 3(c), 3(d) and
3(e). This is caused by the non-convexity of the customer’s
optimization problem, as will be shown in more detail in
the next subsection.

e There is a flat section towards lower p in all of these curves.
This is due to the following reason: a fully voluntary DR
(p = 0) can already lead to certain non-zero level of com-
mitment pyoi, SO that setting p < pyor does not change
the behavior of the customers at all from that with a fully
voluntary DR program.

Interestingly, we further observe that the optimal choice
of p by the society is located relatively near that by the LSE.
To investigate this in more detail, we plot the optimal p by
the society and that by the LSE with varying levels of D in
Figures 4(a), 4(b), and 4(c). We observe that they coincide
with each other closely. As a result, the proposed FCDR
framework in which LSE optimizes p and p in (11) achieves
the social optimum. In addition, as expected, we observe
that the optimal p increases with a higher amount of desired
DR. Also note that at higher levels of D, all three homes
approach an optimal commitment level around 0.95 which
implies that differences in customer load distributions be-
come less important as the amount of desired DR increases.

4.3 Optimal decisions by LSE and customers

We now provide more insights into the decision making
processes of the LSE and the customers in the proposed
FCDR framework.
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4.3.0.1 LSE’s decision on p and p.

In solving (11), given any level of commitment p, the LSE
needs to decide the optimal DR price p. Figure 5(a) illus-
trates the complicated tradeoff under the empirical distribu-
tion of Home B (see our extended version online for Homes
A and C). In general, when the price is too low, there is
not enough DR extracted from the customers. This can be
seen from Figure 5(b). The LSE therefore suffers from the
high penalty of not being able to meet the DR target. On
the other hand, if the price is set too high, the LSE pays
too much for the extracted DR. As shown in the figures, the
tradeoff is complicated and non-convex. The optimal price
brings in significant cost reductions. The observations are
consistent under all three of these empirical distributions.

4.3.0.2 A customer’s decision on y* and v'.

Given the level of commitment p and price of DR p, the
customers need to decide the amount of demand response by
setting the values of y* and y'. This then leads to different
amount of DR provided to the LSE. In particular, Figure
5(b) illustrates the amount of DR provided under the em-
pirical distribution of Home B with different prices of DR.
Clearly, the amount of extracted DR is increasing in the
price offered. Under the three distributions, there is a series
of stages: a convex increasing stage, jump stage(s), smooth
increasing stage(s), a flat stage, and a concave increasing
stage. In order to understand the reason behind this phe-
nomenon, we provide the optimal values of ' and y* selected
by the customer under different prices of DR in Figures 5(c),
and 5(d). Specifically,

e In the first convex stage, y* varies (cf. Figure 5(c)), and
the probability of responding is Pr(Y; < y*) is greater
than p but y' is high resulting in little effective DR. As p
increases, the customer is incentivized to provide more ef-
fective DR by adjusting both y' and y* since the empirical
distribution is not monotonic.

e The jump stage(s) is caused by the non-convez cost func-
tion when a customer makes its decision on y'. Specifically,
we plot a customer’s cost as a function of 3’ in Figure 5(d)
for different p around the price at which the jump happens
in Figure 5(b). It can be seen that: a) finding the optimal
' involves minimizing a non-convex cost function, and b)
as p increases, the optimal y' can switch from the mid-
dle part to either different local minimum or to the lower
bound [; in a discontinuous manner. This thus explains
the jump behavior in the amount of DR in Figure 5(b).

e The smooth increasing stage(s) is caused by the migration
of the local minimum from increasing the price as can be
seen in Figure 5(d).

e In the semi-final flat stage, y* remains unchanged in order
to meet the requirement of response probability p, while
y' also stays at the lower bound I;.

e In the final concave stage, y' stays at the lower bound I,
while y* increases with p (cf. Figure 5(d)) because the
customer is now willing to provide even higher response
probability than p due to the sufficiently high price p.

S. CONCLUSION

This paper proposes a novel framework for demand re-

U

sponse called Flexible Commitment Demand Response (FCDR),

which enables explicit choices of the level of DR commitment.
Numerical results highlight the great benefits of the optimal
level of commitment. In particular, there is roughly a 50%
decrease in social cost compared to programs requiring full
commitment, and up to 40% of additional demand response
extracted with a lower DR price compared to programs with
no commitment.
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