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ABSTRACT
Reducing costs plays a crucial role in building and operat-
ing data centers. Internet service providers such as Facebook
and Google spend billions of dollars on capacity expansion
and operations of their global data centers. Traditionally,
capacity planning for data centers is done separately from
operational management, which incurs inefficiency. In fact,
operational management has significant impacts on capacity
planning. Motivated by this gap, we propose a framework
that jointly optimizes both capacity planning and opera-
tional management for sustainable data centers and data
centers participating in demand response programs. Nu-
merical results based on real-world cases highlight that the
proposed framework remarkably reduces up to 50% of to-
tal expenditures and 75% of greenhouse gas emissions com-
pared to conventional methods. Additionally, our results
show that participations in various demand response pro-
grams result in vastly different capacity planning decisions
and lead to emission reductions of up to 60%.

Keywords
Sustainable data centers; capacity planning; operational man-
agement; demand response.

1. INTRODUCTION
The total cost of ownership (TCO) and greenhouse gas

(GHG) emissions of data centers are exponentially increas-
ing [26] due to the explosive demand for using Internet ser-
vices. Giant cloud providers like Google and Facebook spend
billions of dollars every quarter on their data centers [33].
On the other hand, data centers are under pressure to re-
duce their emissions. Conventional data centers are mainly
powered by the electricity grid that heavily depends on fossil
fuel. In fact, a data center can release emissions equivalent
of hundred thousands of cars [12, 1].

The TCO of a data center is mainly the capital expense
(CapEx) and the operational expense (OpEx) [9]. CapEx of
a data center is the costs that must be invested up front and
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then depreciated over a certain time frame, e.g., the con-
struction cost of a data center and the purchase of servers.
OpEx refers to the costs of operating a data center, includ-
ing electricity costs, software and hardware maintenance,
and repairs, salaries for human resources, etc.

The CapEx of data centers is actually an interesting topic.
For instance, renewable energy is normally considered to be
free. However, the cost of deploying a renewable power plant
is far more expensive than building a traditional power plant
[5]. Fortunately, the price of renewable energy equipment is
going down in the long-run with improved technologies. On
the other hand, renewable energy sources are not dispatch-
able because their generations heavily depend on weather
and geographical conditions. Such issues are critical in effi-
cient use of renewable energy sources.

The OpEx of a data center is becoming more dynamic
than ever as a result of increasing and abundant work focus-
ing on power demand management. For instance, the work-
load in data centers can be shaped to achieve a given ob-
jective, such as minimizing electricity cost [35, 24]. Further-
more, the workload demands can even be balanced among
the geographically distributed data centers [20, 25].

The relationship between CapEx and OpEx in a data cen-
ter is bi-directional. CapEx and Opex are the costs associ-
ated with the capacity planning and operational manage-
ment, respectively. Capacity planning is the process of de-
termining the infrastructure for a data center. In order to
have efficient capacity planning, it is necessary to consider
how the data center would operate in the long-run. Mean-
while, capacity planning may have significant impacts on
OpEx because the cost of operational management varies
under different settings. Traditionally, a data center is built
to serve the peak workload demands [27]. However, it may
lead to over-provisioning and cause a huge waste of capi-
tal and maintenance costs since the workload can actually
be shaped to reduce the peak. On the other hand, under-
provisioning would not meet the quality of service (QoS)
requirements, e.g., latency, which severely debilitates the
business.

In this paper, we propose an optimization framework for
joint capacity planning and operational management in Sec-
tion 3. The optimization framework is to minimize both
CapEx and OpEx. Meaning, the framework can deal with
the inter-dependency of capacity planning and operational
management to outperform the traditional methods. To
evaluate the proposed framework, we carry out numerical
simulations for two scenarios: sustainable data centers and
data center demand response.



Sustainable data centers (SDC) [37] are designed to re-
duce costs and GHG emissions. For example, HP designed
“Net-zero Energy Data Centers”, which utilize the various
renewable energy sources to reduce energy cost as well as
emissions [8]. Furthermore, sustainable data centers may
integrate some of advanced power management techniques,
such as server consolidation [18, 40, 17], network consolida-
tion [39, 7, 30], colocation of workloads [6], cooling power
optimization [19, 24], batch job scheduling [23, 13], and us-
ing energy storages [35, 19, 22]. How to optimize the design
of sustainable data centers is still challenging as they are far
more complicated than that of traditional data centers.

The participations of data centers in demand response
(DR) programs can potentially contribute to the electricity
grid [38, 21]. In fact, data centers are large loads and can be
considered as giant virtual batteries to help improve the re-
liability of electricity grid [38]. Despite such great potential,
lots of important questions still remain open. How do the
participations in DR programs affect a data center in terms
of cost, capacity planning, and power management? How
well does a data center respond to the DR signals? What
are the subsequences of the changes, e.g., in GHG emissions?
We address these questions in Section 5.

Our contributions are three-fold.
First, we develop an optimization framework for joint ca-

pacity planning and operational management in Section 3.
The optimization framework is based on the model of sus-
tainable data centers and general enough to be applied to
traditional data centers. The model includes multiple power
demand and supply components, i.e., IT workload demand,
cooling power, renewable energy sources, non-renewable en-
ergy sources, and electricity grid. The joint optimization
framework provides an optimal capacity planning decision
to construct, expand and operate the data center annually.
In addition, the model can estimate the emissions of a data
center. As the framework requires predictions for capac-
ity planning in the long-run, prediction errors are incorpo-
rated. Moreover, we extend the optimization framework to
include Net-Zero Energy Data Centers and data center de-
mand response (DCDR) in Section 4.4 and Section 5, respec-
tively. Unlike conventional data centers, Net-zero Energy
Data Centers (NEDC) can be run by stand-alone micro-
grids mainly powered by renewable resources [8].

Second, we evaluate the proposed framework on sustain-
able data centers in Section 4. The evaluation is based on
the real design of a data center, EcoPOD designed by HP
[2]. The data center can provision power from photovoltaic
(PV) generation, gas engine (GE) generation, and electricity
grid.

• We highlight the benefits of using our proposed frame-
work in Section 4.2. We compare the proposed frame-
work with three baseline methods. The comparisons
demonstrate that the proposed framework achieves up
to 50% of cost savings and 75% of emission reductions.
Additionally, the simulation results in annual capac-
ity planning show that the proposed framework tends
to increase the use of renewable energy and decrease
emissions over time.

• We study the impacts of prediction errors on our pro-
posed framework in Section 4.3. Under large prediction
errors, the proposed framework still achieves signifi-
cant cost savings and emission reductions.

• We provide sensitivity analysis on the proposed frame-
work for a NEDC in Section 4.4. As NEDC are mainly
powered by the local energy resources, the framework
is extended to include a net-zero energy constraint.
We study various factors, i.e., electricity price, gas
price, shape of interactive workload, and ratio of flex-
ible workload. This analysis provides lots of interest-
ing insights. For instance, there are trade-offs between
PV and GE. Additionally, while the high ratio of flex-
ible workload has very positive impacts on using more
PV, the shapes of interactive workload affect little on
the capacity planning and operational management of
NEDC.

Last but not least, we evaluate data center’s capacity plan-
ning and operational management when participating in de-
mand response programs. Extensive numerical simulations
in Section 5 show that this results in different capacity plan-
ning decisions, and some of them reduce emissions up to
60%. Moreover, we demonstrate that the proposed frame-
work allows data centers to adapt to each DR program very
well.

2. BACKGROUND AND PRIOR-WORK

2.1 Sustainable data centers
The burdens of financial costs, energy resources, and emis-

sions have been heavily put on data centers [15]. Thus, the
concept of sustainable data centers has been defined to cut
the electricity usage, utilize renewable energy sources, and
reduce emissions [37]. A sustainable data center can be pow-
ered by multiple energy resources, while renewable energy
sources, such as photovoltaic (PV) and wind, are preferred.

From social perspectives, reducing GHG emissions be-
comes critical. Various countries are developing the poli-
cies and regulation on emissions. For example, cap and
trade is the government-mandated and market-based ap-
proach that controls pollution by providing economic incen-
tives for achieving reductions in emissions [32]. The viola-
tion of regulated emission caps may lead to penalties [28].
Therefore, such heavy power loads like data centers are un-
der pressure to reduce their emissions.

What we model and study: We model sustainable
data centers in Section 3. In our evaluation, we study our
proposed optimization framework on a sustainable data cen-
ter in terms of costs and emissions. Furthermore, we extend
the evaluation to a Net-zero Energy Data Center, a special
case of sustainable data centers.

2.2 Data center power management
The major operational cost is dependent on data cen-

ter power management. A data center power management
scheme, run by human or computer program, strives to re-
duce the costs and emissions. Data center power manage-
ment can be divided into multiple topics, such as server con-
solidation [18, 40, 17], network consolidation [7, 39, 30], colo-
cation of workloads [6], cooling power optimization [19, 24],
batch job scheduling [23, 13], geographical load balancing
[25, 20], and using energy storages [35, 19, 22]. Now, we
discuss colocation of workloads in more details.

Server consolidation: Huge amounts of power are wasted
due to the large idle power consumption of servers and low
utilization. Therefore, significant power can be saved by



consolidating workloads on the right amount of servers and
switching the remaining servers to low power modes or even
turning them off [40, 17, 18].

Network consolidation: Thousands of network devices can
also be switched off to save the power consumption. The key
idea is to turn off the unused network devices, such as the
switches connected to the servers that have been turned-off
[7, 39, 30].

Colocation of workloads: Currently, the two types of work-
load, i.e. interactive workloads and batch jobs, are usually
served on different servers, making it difficult to save power
through consolidation. On the other hand, the power sav-
ing potential is great because there are different resource
and performance requirements for interactive workloads and
batch jobs. A promising way is to run interactive work-
loads with high priority that keeps its performance, e.g.,
mean/percentile response time, (almost) unaffected while
running batch jobs whenever there is spare capacity to use.
This can significantly increase the server utilization and there-
fore save power [6].

Cooling optimization: While a large amount of power is
used for keeping data centers under certain thermal con-
straints through cooling systems, there is great potential to
reduce cooling power by optimizing the data center to use
the most effective cooling in the right amount at the right
time [19, 24].

Batch job scheduling : The flexibility in batch jobs pro-
vides great temporal flexibility for scheduling to shape the
demand. A smart scheduler can run batch jobs in the right
amount at the right time to make demand more supply fol-
lowing [23, 13].

Geographical load balancing : When an interactive work-
load is served by an Internet-scale system having data cen-
ters at different locations, a spatial flexibility emerges. A
global load balancer can route interactive workload request
to the right data center to better align demand with supply
[25, 20].

Energy storage: Energy storages can be used to save en-
ergy cost by charging when supply exceeds demand or supply
is cheap and discharge in the future to power the data center,
which can better align power supply with demand. However,
the current high cost of energy storage usually prevents large
deployment, e.g., using energy storage to power the whole
data center for several hours. Instead, the current prac-
tice just uses energy storages in UPS (Uninterrupted Power
Supply) as a transit from the electricity grid to backup gen-
erators, which can last several minutes to tens of minutes
depending on the ramp up the speed of the backup genera-
tors [35, 19, 22].

What we model and study: We incorporate one of
the aforementioned techniques, i.e., colocation of workloads,
into our framework, which is general enough to include other
techniques. In our evaluation, we study that important role
of power demand management in reducing costs and emis-
sions.

2.3 Data center demand response (DCDR)
Demand response (DR) programs are defined to improve

the traditional electricity markets and grids. There are gen-
erally two types of participation in DR programs, which are
passive and active participations [38].

• Passive participation: Passive participation is typical
in the smart pricing services. The pricing services is-

sue price signals to encourage electricity users to ad-
just their power consumption profiles. In electricity
markets, there are multiple pricing services, i.e. Time-
of-Use (ToU), Inclining Block Rates (IBR), Peak Pric-
ing (PP), Coincident Peak Pricing (CPP), Day-ahead
Pricing (DaP), and Real-Time Pricing (RTP). For ex-
ample, peak-pricing charges a high price at peak de-
mand to prevent power outages.

• Active participation: Active participation is diverse.
Customers can use the wholesale markets, ancillary
services, or voluntary reduction programs. A whole-
sale market allows data centers to purchase electricity
directly from power suppliers instead of regional retail-
ers. Ancillary services are defined to maintain reliable
operation and security of the electricity transmission
system. The basic idea is to encourage customers to
adjust their loads due to the condition of the electricity
grid. In voluntary reduction programs, customers can
have flexible contracts with grid operators for offering
services.

There is a high potential that large power loads like data
centers participate in demand response programs. In ad-
dition to the flexibility of power demand, data centers can
utilize their energy storages as well as UPS to increase the
flexibility of their loads during the demand response events
[21, 38].

What we model and study: In Section 5, we model and
study the participation of data centers in DR programs. We
incorporate and evaluate several popular DR programs, i.e.,
ToU, CPP, IBR, an ancillary service, and wholesale markets.
We conduct simulations to answer the following questions:
How do DR programs change the power profile of data cen-
ters? How do the DR programs impact on the capacity
planning and operational decisions?

3. OPTIMIZATION FRAMEWORK

3.1 Modeling sustainable data centers
We consider the problem of capacity planning and opera-

tional management for sustainable data centers in Y years,
where each year is discretized into T time slots. Since the
data center can be expanded annually, we model the data
center for each year y ∈ {1, 2, · · ·Y } as follows.

Power demand. Power demand is mainly from two sub-
systems: IT subsystem and cooling subsystem [9]. The IT
subsystem serves the IT workloads, i.e., interactive workload
and flexible workload (batch jobs). The cooling subsystem
reduces the heat generated by the IT equipment to keep the
inner temperature in an acceptable range. We use the model
of interactive workloads and batch jobs similar to [19].

Interactive workload demand: There are N interactive
workloads. For interactive workload i, we assume that the
IT power is allocated to interactive workload i at time t ∈
{1, 2, · · · , T} of year y, denoted by ai(y, t). Here ai(y, t) can
be derived from either analytic performance models [34] or
real-world data traces.

Batch job demand: Batch jobs are the sequence of com-
puter commands to be processed. We assume there are J
classes of batch jobs. Class j has total power demand Bj(y),
starting time Sj , and deadline Ej . Let bj(y, t) denote the
amount of capacity allocated to class j jobs at time t of year



y. Hence, bj(y, t) can be allocated such that∑Ej

t=Sj
bj(y, t) = Bj(y) ∀y, j. (1)

The total IT power demand PIT (y, t) at time t of year y

is then computed as PIT (y, t) = Pidle(y, t) +
∑N

i=1 ai(y, t) +∑J
j=1 bj(y, t), where Pidle(y, t) is the idle power consumption

of the data center, which can be computed based on the
number of active servers [18].

The amortized infrastructure cost of IT subsystem per
Watt per year is IIT (y) ($/W). The operational and main-
tenance cost at time t is pr(y, t). Let CIT (y) be the capacity
of IT subsystem at time t of year y. The total IT power de-
mand PIT (y, t) is capped by

PIT (y, t) ≤ CIT (y), ∀y, t. (2)

Using power usage efficiency (PUE) [9], the total power
demand P (y, t) at time t of year y is

P (y, t) = PUE(y, t) ∗ PIT (y, t),

where PUE(y, t) is the PUE at time t of year y. Here, the
power demand of the cooling subsystem is (PUE(y, t)−1)∗
PIT (y, t).

Power supply. At supply side, we model renewable gen-
eration, non-renewable generation, the electricity grid, and
energy storages.

Renewable generation (RG). A data center may have R re-
newable energy sources, e.g., on-site PV panels, on-site/off-
site wind farms, etc. The amortized infrastructure cost of
source r per Watt per year is Ir(y) ($/W). The operational
and maintenance cost at time t is pr(y, t). Let Cr(y) denote
the capacity of RG r in year y. So, let cr(y, t) be the power
generation of RG r at time t of year y. The renewable gen-
eration cr(y, t) is often is uncontrollable and formulated as
cr(y, t) = CFr(y, t)×Cr(y), where CFr(y, t) is the capacity
factor at time t of year y, which is the ratio of actual output
to the potential output.

Non-renewable generation (NG). A data center may have
S non-renewable sources, e.g., gas engines. The amortized
infrastructure cost of source s per Watt per year is Is(y)
($/W). The operational and maintenance cost at time t is
ps(y, t). Let Cs(y) denote the power capacity of NG s in
year y. So, the power generation cs(y, t) of NG s at time t
of year y satisfies

cs(y, t) ≤ Cs(y), ∀y, t. (3)

Electricity grid. At time t of year y, pg(y, t) and pb(y, t) re-
spectively denote the electricity usage based charging price,
($/kWh) and the sell back price ($/kWh). The sell pack
price is applied when the data center sells their unused local
generation back to the electricity grid. At time t of year
y, the grid power consumption is c+g (y, t) and the sell-back
power is c−g (y, t). Let Cg(y) be the power capacity of the
electricity grid in year y. In fact, this is usually set to the
maximum grid power of the data center since the infrastruc-
ture cost is relative small compared with the other utility
charges [9]. In particular,

Cg(y) = max{c+g (y, t)}t∈{1,2,··· ,T}, ∀y, (4)

where c+g (y, t) and c−g (y, t) are both non-negative.
Energy storages. The total capacity of the energy storage

at year y is Ce(y)

Emissions. Emissions are from RG sources, NG sources
and the electricity grid. In year y, the emissions rates of
RG source r, NG source s, and the electricity grid are qr(y),
qs(y), and qg(y), respectively. We do not impose emission
cap as it is still regional. However, and our model is general
enough include a constraint of emission cap.

The description of important notations in year y.
Symbol Description

IT
ai(y, t) Interactive workload power de-

mand at time t of year y
Bj(y) Total batch job workload power

demand in year y

Prices
pg(y, t) Electricity price at time t
pb(y, t) Sell-back price at time t

Infra.
IIT (y) Amortized cost of IT and cool-

ing subsystems
Ir(y) Amortized cost of RG r
Is(y) Amortized cost of NG s

O&M
pr(y, t) O&M cost of RG r at time t
ps(y, t) O&M cost of NG s at time t

Emissions
er(y) Emissions rate of RG r
es(y) Emissions rate of NG s
eg(y) Emissions rate of electricity grid

Prediction errors: Since our proposed framework does
capacity planning for long-term data center operation, it
requires predictions of workload demand, renewable gener-
ation, and electricity prices. In practice, prediction errors
are inevitable. At time t of year y, the prediction errors of
interactive workload, batch jobs, capacity factor, electricity
prices, sell-back prices, and the O&M cost of NG sources are
δa(y, t), δb(y), εr(y, t), ρg(y, t), ρb(y, t), and ρs(y, t), respec-
tively, such that

δa(y, t) = ai(y, t)− âi(y, t),

δb(y) = Bj(y)− B̂j(y),

εr(y, t) = CF (y, t)− ĈF (y, t),

ρg(y, t) = pg(y, t)− p̂g(y, t),

ρb(y, t) = pb(y, t)− p̂b(y, t),
ρs(y, t) = ps(y, t)− p̂s(y, t),

where âi(y, t), B̂j(y), ĈF (y, t), p̂g(y, t), p̂b(y, t), and p̂s(y, t)
are respectively the predicted values of interactive workload,
batch job, capacity factor, electricity price, sell-back price,
and O&M cost of NG source s at time t in year y. We do not
consider the prediction errors of O&M cost for RG sources
since they are very small and usually stable for a long-time.

3.2 Optimization problem formulation

Summary of objective components.
Expression

UtilBill
∑Y

y=1

∑T
t=1

(
p̂g(y, t)c+g (y, t)− p̂b(y, t)c−g (y, t)

)
RGEx

∑Y
y=1(

∑R
r=1(Ir(y)Cr(y)+

∑T
t=1 pr(y, t)cr(y, t))

)
NGEx

∑Y
y=1(

∑S
s=1(Is(y)Cs(y)+

∑T
t=1 p̂s(y, t)cs(y, t))

)
ITEx

∑Y
y=1 IIT (y)CIT (y)

Objective function. The objective function includes
costs from both supply and demand sides. The power sup-
ply cost is the predicted CapEx and OpEx of purchasing



the electricity (UtilBill) and using distributed generations
(RGEx and NGEx). At the demand side, there are pre-
dicted CapEx the IT subsystem (ITEx). Hence, the objec-
tive function of operational cost is defined as follows.

OPT : UtilBill +RGEx+NGEx+ ITEx.

Summary of decision variables in year y.
Symbol Description

Capacity
planning

Cg(y) Grid power capacity
Cr(y) Capacity of RG r
Cs(y) Capacity of NG s
CIT (y) IT capacity

Operational
manage-
ment

c+g (y, t) Grid power usage at time t
c−g (y, t) Grid sell-back power at time t
cs(y, t) Output of DG s at time t
bj(y, t) Power for batch job j at time t

Decision variables. There are two types of decision vari-
ables which are capacity planning and operational manage-
ment.

• Capacity planning variables are the capacities of IT
subsystem, CIT (y), RG source r, Cr(y), NG source s,
Cs(y), and the electricity grid, Cg(y).

• Operational management variables decide (i) how much
electricity would be imported from the electricity grid,
c+g (y, t)? (ii) how much electricity would be sold to the
electricity grid, c−g (y, t)? (iii) How much energy would
be generated by NG source s, cs(y, t)? (iv) How much
power is allocated to serve batch job, bj(y, t)?

The summary of decision variables is in Table 3.2.
Constraints.
Supply-demand balance. To prevent the data center from

power outages, the total supply generation is always greater
than or equal to the total power demand as

R∑
r=1

cr(y, t) +

S∑
s=1

cs(y, t) + c+g (y, t)− c−g (y, t) ≥ P (y, t), ∀y.

(5)

Capacity caps. Under capacity planning, the capacities of
IT CIT (y) , electricity grid Cg(y), and non-renewable dis-
tributed generation Cs(y) cannot be violated as in (2), (3),
and (4), respectively.

Batch job deadlines. As the batch jobs bj have to be com-
pleted during the starting time Sj and the ending time Ej ,
the constraint (1) is included.

Computational complexity. The objective function of
the framework is actually linear on the decision variables.
In addition, the aforementioned constraints are also linear
except the constraint for the maximum grid power (4), which
can be easily converted into a set of linear constraints. Thus,
the framework can be efficiently solved by using a linear
programming tool. In particular, we use CVX [14] to solve
the optimization for our simulation.

4. EMPIRICAL EVALUATION FOR SUSTAIN-
ABLE DATA CENTERS

4.1 Experimental setup
We carry out evaluation based on the settings of a HP

EcoPOD data center [2].
Demand side. The power demand capacity of the data

center is 1MW. The power demand is from both IT equip-
ment serving both interactive and batch workloads, and
from cooling facilities removing the heat. The peak power
usage is 720kW. The Peak-to-Mean Ratio (PMR) of inter-
active workload is set at 3. Flexible workloads (batch jobs)
are 50% of the total IT workload demand with flexibility 24
hours. The utilization of interactive workloads in a server is
40%, and the maximum utilization for all workloads is 90%.
PUE is set at 1.2. We study the PMR and flexible workload
ratios in terms of capacities and costs in Figure 8 and 9.

Supply side. We consider a power micro-grid to supply
the data center. The power micro-grid consists of on-site
photovoltaic (PV) array, general electric (GE) natural gas
engines, and the electricity grid (grid).

PV array: The amortized infrastructure cost of PV array
after rebate is $2.15/W [10]. The maximum size of PV array
is 1MW. The operational cost and maintenance cost of PV
array are respectively $0/kWh and $0.005/kWh. The PV
capacity factor average is 18% which is from the trace of
Houston PV generation.

GE engines: The amortized infrastructure cost of GE en-
gines is $1/W. Maximum size of GE engines can be installed
is 1.4MW. The operational cost is $0.06/kWh (natural gas,
$5/Mcf [4], 30% efficiency), while the maintenance cost is
$0.005/kWh. We vary the natural gas price in Figure 6(a)
to study the impacts of natural gas prices.

Electrical grid: The base electricity price is fixed at $0.056/kWh
(Texas) [3]. There is no sell back price.

Emissions: The emissions rate from PV array, GE gen-
eration, and electricity grid are 0.034g/kWh, 0.443g/kWh,
and 0.5g/kWh, respectively.

Prediction errors. Prediction errors are assumed to be mu-
tually independent and follow the normal distribution with
zero mean. To study the impacts of prediction errors, we
vary the normalized RMSEs (root mean squared errors) in
Figure 4.

4.2 Optimizing traditional data centers with
renewable energy

In this subsection, we evaluate the joint framework on
planning and operating a sustainable data center. We an-
swer three questions: How does the optimization framework
plan annually? How much benefits can the optimization
framework achieve? How do prediction errors impact on the
proposed framework?

Annual capacity planning. In practice, the electricity
prices, gas prices, and workload demand tend to increase
in the long-term. The average annual-increasing rates of
electricity prices, gas prices, and workload demand are 1.05,
1.01, and 1.09 [11, 4, 36]. Meanwhile, the amortized cost of
PV array decreases 12% annually [10].

Figure 1(a) presents the capacities of power sources in 7
years. In general, the data center increases the capacity
of PV annually but not the peak grid power consumption.
In the first year, the data center prefers the electricity grid
to other power sources because of the low electricity price.
However, the data center significantly expands PV genera-
tion capacity from year 2 as the electricity prices increase
and the infrastructure cost of PV decreases. In year 7, the
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Figure 1: Annual capacity planning. The data center is going to use more PV generation and GE generation
while reducing the imported energy from the electricity grid. The major expenditure concentrates on the
infrastructure of PV. The normalized emissions go down due to the high penetration of PV generation.

data center provisions GE generation since the slow natural
gas becomes relatively cheaper than the imported electricity.
Although the data center prefers to use PV, the peak grid
power consumption is still noticeably large. The intuition
behind this is that PV generation is not available during
night time which requires the data center to provision grid
power.

Figure 1(b) shows the annual breakdown expenditures of
the data center. In the first year, the utility bill (Util) of
the imported energy from the electricity grid is dominant.
Meanwhile, the cost of PV infrastructure (PV-I) quickly in-
creases because PV amortized cost is added by installing
more PV every year. The PV O&M (PV-O) expenditure
linearly increases as the PV capacity goes up. In year 7,
the GE O&M cost (GE-O) is 15% the total annual expen-
diture. GE-O mainly comes from the amount of natural gas
supplied to the GE.

The annually normalized emissions of the data center, de-
fined as the ratios of total emissions to the total power de-
mand, are plotted in Figure 1(c). Since the normalized emis-
sions of the electricity grid are high, the normalized emis-
sions of the data center are highest in year 1. The increase
of the PV generation can reduce normalized emissions for
the data center. The normalized emissions sharply go down
to 36% in year 4 as compared to the first year. However,
there is little change from year 4 to year 7 as the ratio of
PV capacity to other power sources is not considerably de-
creased.

How much cost savings and emission reductions
does the proposed framework achieve? To highlight
the benefits of the proposed framework, we compare the
proposed framework (PROP) with three baseline methods,
namely grid-only, supply-only, and demand-only.

• Grid-only (GRID): The grid-only method only uses
the grid power from the electricity grid to provision
the power demand. It does not use any power demand
management techniques.

• Supply-only (SUP): Given the power demand, the supply-
only method optimizes capacity planning at the sup-
ply side. This method can optimize the use of energy
sources among PV, GE, and the public electricity grid.

• Demand-only (DEM): At the supply side, the capac-
ities of PV and GE generation are set at 50% and
70% of the power demand capacity, respectively. The
demand-only method optimizes the power demand, i.e.,

scheduling the batch jobs, to reduce the operational
cost.

In fact, PROP combines the SUP and DEM, and therefore
can provide the best cost reductions.

The power profiles of these four methods in twelve typical
days representing for the twelve months in year 5 are shown
in Figure 2. GRID provisions power only from the electricity
grid. SUP prefers the PV sources to the electricity grid
and GE. Meanwhile, DEM utilizes installed GE generators
because the electricity price is relatively more expensive than
the O&M cost of GE sources. However, PROP uses only
PV generation and grid power. In Figure 2(c) and 2(d),
DEM and PROP shape the power demand to follow the PV
generation while GRID and SUP are dependent on imported
electricity.

We evaluate the four methods in terms of costs and emis-
sions in Figure 3. It shows that PROP remarkably reduces
the total expenditure by 50% while it achieves very close
emissions to the lowest one, i.e., DEM. In Figure 3(a), SUP
slightly reduces the total cost as it still depends much on
the electricity grid. However, DEM shows that power man-
agement at demand side is very effective because it makes
the power demand follow the PV generation.

Key insights: (i) The proposed framework not only re-
markably reduce the total cost, but also utilizes renewable
energy very well. (ii) As the renewable installation becomes
more cost-effective, the proposed framework prefers to use
renewable energy and reduce the dependence of sustainable
data centers on the electricity grid.

4.3 Impacts of prediction errors
Prediction errors are generally negligible during opera-

tional management, which happens in real-time. Hence,
GRID and DEM are not affected by the prediction errors
because they do not need capacity planning. On the other
hand, SUP and PROP suffer from prediction errors because
they provide the capacity planning decisions, and then oper-
ate the data center in real-time based on the planned capac-
ities. We normalize the root mean squared errors (RMSE)
compared to the means of interactive workloads, batch jobs,
capacity factors of PV, electricity prices, and gas prices, re-
spectively. For instance, when normalized RMSEs are 0.2,
the RMSEs of all the aforementioned predictions are 20% of
their means.

Figure 4(a) shows the impacts of prediction errors on the
total expenditures of the four methods. As the prediction er-
rors become large (more than 10%), the total costs of SUP
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Figure 2: The power profiles of the baseline methods and the proposed framework in year 5. GRID provisions
the only grid power. SUP optimizes the power sources only at the supply side. DEM optimizes the power
demand, i.e., scheduling the batch jobs.
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Figure 3: Comparisons with baseline methods. The
proposed framework reduces up to 50% of the to-
tal expenditures, and significantly cuts down 75%
greenhouse gas emissions.

and PRO go up while the costs of GRID and DEM stay
unchanged. Interestingly, total cost of the proposed frame-
work is still the best and achieves the significant cost savings,
i.e., 58% of GRID. The intuition behind this is that the op-
erational management is cost-efficient in using the various
power sources and scheduling the batch jobs to compensate
for the prediction errors.

The impacts of prediction errors on emissions are pre-
sented in Figure 4(b). As the prediction errors increase, the
emissions of PROP go up. However, PROP still reduces
49% of emissions reduction compared to GRID. Specially,
the emissions stay unchanged when RMSE is greater than
0.2.

Key insights: Under large prediction errors, our pro-
posed framework still achieves significant cost and emission
reductions compared to the baseline methods.

4.4 Sensitivity analysis
We carry out the experiments based on a real data center,

called Net-zero Energy Data Centers (NEDC) invented by
HP [8]. In NEDC, the total local generation (i.e. PV and GE
generations) is greater than the total power consumption.
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Figure 4: Impacts of prediction errors. Under
large prediction errors, the proposed framework still
achieves the significant cost and emission reductions.

NEDC have an additional constraint

T∑
t=1

R∑
r=1

cr(y, t) +

T∑
t=1

S∑
s=1

cs(y, t) ≥
T∑

t=1

P (y, t), ∀y,

where the left hand side and the right hand side are the total
power generation and the total power consumption in year
y, respectively.

We focus on studying the impacts of supply and demand
factors on the data centers during the first year. The supply
factors include electricity price, and gas price. The demand
factors include shape of interactive workload and ratio of
flexible workload. Besides the capacities and expenditures
of the data center, we study the payback period, which is the
number of years for the data center to recoup the investment
in the infrastructure costs of PV and GE instead of using
only the electricity grid. The shorter payback period is, the
more financial benefit the proposed framework provides.

4.4.1 Impacts of supply factors
Electricity price. Figure 5 presents the impacts of elec-

tricity prices on the proposed framework. Figure 5(a) shows
that the data center uses more GE generation and less grid
power when the electricity price increases. However, the
data center surprisingly keeps reducing the capacity of PV.
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Figure 5: Impacts of electricity prices. As the elec-
tricity price increases, the capacity of GE is in-
creased to compensate for the PV generation during
nighttime. Interestingly, it results in reducing the
capacity of PV.

It is because the data center starts to use more GE to pro-
vide power during nighttime and replace PV during daytime.
It is because the costs of GE are relatively lower than the
infrastructure of PV as PV is not fully utilized around its
peak generation. In addition, when the grid power becomes
more expensive, the payback period sharply decreases as in
Figure 5(b). Hence, the NEDC can significantly gain finan-
cial benefits when the electricity prices are high. Gas price.
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Figure 6: Impacts of gas prices. As the gas prices in-
crease, the capacity of PV increases quickly because
the data center cannot import too much electricity
grid.

Figure 6 shows the impacts of gas prices on capacities and
payback periods. In Figure 6(a), the data center should use
the GE generation at low gas prices, but it switches using
PV when the gas price is more expensive. Especially, there
is the sharp increase of PV capacity when the gas price is
greater than 0.06. Due to the non-dispatchability of solar
energy, the data center needs the large capacity of PV gen-
eration to compensate for the reduction of GE generation.
As the gas price increases, the payback period goes up as in
Figure 6(b) because the data center needs more PV.

PV capacity factor. To understand how PV capacity fac-
tors affect on the proposed framework, we run the exper-
iments with various capacity factors of PV. Recall the ca-
pacity factor is the average power generated, divided by the
rated peak power. Figure 7 shows the dependence of the
capacities and payback periods of the data center on PV ca-
pacity factors. The capacity of PV increases and then varies
at high capacity factors. The capacity factor of PV array
varies due to diverse reasons, such as geographical condi-
tions. When PV has enough efficiency, i.e. capacity factor
varies from 0.15 to 0.25, the data center starts to use PV.
At a very high capacity factor (0.25-0.4), it is not necessary
to increase the PV capacity because even the lower capacity
with high capacity factors can still provide enough genera-
tion.

Key insight : The capacities of PV, GE, and peak power
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Figure 7: Impact of different PV capacity factors.
The curves of PV are very interesting which goes
up and down because the high capacity factors have
strong impact on the capital cost and operational
cost of PV.

of grid power consumption adapt to the variety of supply
factors accordingly. (i) The impacts of electricity prices and
gas prices show the trade-offs between PV and GE. (ii) Un-
der the increase of electricity price, the capacity of PV unex-
pectedly goes down together with the peak grid power. (iii)
Under a certain gas price, the data center does not provision
PV generation but only use GE and grid power instead.

4.4.2 Impacts of demand factors.
Besides the supply factors, it must be interesting to study

how the demand factors impact on capacity planning and
costs of the data center.
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Figure 8: Impacts of interactive workload shapes.
The shapes of interactive workload have limited im-
pacts on the capacities and expenditures of GE and
PV.

Shape of interactive workload: Interactive workload is non-
flexible and required to be processed with high responsive
speed in data centers. We use the peak-to-mean ratio (PMR)
to study the impacts of interactive workload shape. Figure
8 shows that shape of interactive workload has limited influ-
ence on both the capacities and expenditures of data centers.
In particular, the capacity of PV and the peak grid power
consumption slightly increase as the PMR increases. On the
other hand, the data center slightly reduces GE when it has
more PV power generation. As the capacities of PV and GE
do not vary much, the breakdown expenditures are almost
the same when varying the PMRs in Figure 8(b).

Ratio of flexible workload is the ratio of batch jobs to the
IT workload demand. The higher ratio of flexible workload
means the more flexibility data centers have in power de-
mand management. In particular, Figure 9(a) highlight that
the data center is more aggressive in using renewable energy
as the ratio of flexible workload increases. It shows that the
flexible workloads can promote the use of renewable sources.
Especially, when workloads are totally flexible, there is no
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Figure 9: Impacts of flexible workload ratios. The
ratio can significantly reduces the total expenditure
and change the capacity structure of the data center.

need to use GE and grid power as the workloads can be
scheduled to totally follow PV generation. Figure 9(b) shows
that the flexible workloads can significantly reduce the total
expenditure, e.g., 28% reduction of the total cost.

Key insights: (i) The shape of interactive workload does
not affect much on the capacity planning and operational
management of data centers. (ii) The flexible workloads pro-
mote the use of renewable energy and significantly reduces
the total cost.

5. DATA CENTER DEMAND RESPONSE
In this section, we extend the framework to study data

center demand response (DCDR).

5.1 Modeling data center demand response

Demand response rates.

Symbol Value ($/kWh)

ptou(t) 0.05 (night), 0.219 (peak), 0.06 (off)

plibr 0.2 (l = 1: 50kW), 0.5 (l = 2: 100kW),
pcpp 11.2
psr 0.02
pws 0.05

To model DCDR, the proposed framework is modified for
including the costs of participating in DR programs into
the objective function a part of UtilBill. In particular, we
consider the following five DR programs:

• Time-of-Use (ToU) rates, ptou(t), are defined based on
the different times during a day, such as night time,
peak time, and off-peak time [31].

• Inclining block rates (IBR) encourage customers to
consume electricity under some level, l, by charging
a higher price, denoted by plibr, for the exceeding elec-
tricity usage.

• Under coincidence peak pricing (CPP) programs, in-
dustrial consumers like data centers are charged at a
very high price, pcpp, (e.g. than 200 times) for the
usage during coincident peaks [22]. For example, the
CPP time is an hour per month selected by the utility
company.

• In spinning reserve (SR) service, electricity customers
are rewarded based on predefined SR rates if they re-
duce their load after receiving an SR signal command.

• The rates pws in wholesale markets are typically cheaper
than the regular electricity prices. The participations
of data centers in wholesale markets allow electricity
suppliers to efficiently plan their generation.

The DR rates are summarized in Table 5.1.

5.2 Numerical results
The numerical results are to study the impacts of DR pro-

grams on a data center using our proposed framework within
a year. We answer the following two questions: How does
the power profile of data center look like when participating
in DR programs? How do DR programs impact on costs and
emissions?

Figure 10 presents the typical daily power profiles of data
centers participating in the DR programs. There are six
cases: (1) Data centers do not participate in any DR pro-
grams, and data centers participate in (2) the ToU pricing
program, (3) the CPP program, (4) the IBR program, (5)
the SR ancillary service program, and (6) the wholesale mar-
ket.

In the case of without any DR programs in Figure 10(a),
the data center prefers to provision only the grid power be-
cause the electricity price is relatively cheaper than using
GE and PV. In addition, the proposed framework does not
need to schedule the batch jobs as the electricity price is
fixed.

Figure 10(b) illustrates the power profiles of the data cen-
ter in the ToU program. We have 3 ToU price levels for off-
peak hours $0.06/kWh, night hours $0.05/kWh, and peak
hours $0.219/kWh [29]. The rates of night hours are the
cheapest while the electricity rates of peak hours are the
most expensive. The data center provisions PV and GE
generation to reduce the electricity bill during peak hours.
As the peak of PV generation is in the peak hours, PV
generation contributes the most power during peak hours.
Compared to Figure 10(a), the power demand is shifted to
match the PV generation and avoid the high peaks during
the peak hours. When the PV generation goes down within
the ToU peak hours, the data center operates GE to serve
the power demand. During off-peak hours, the data center
prefers to use PV generation if available, then imports the
energy from the electricity grid if necessary. Furthermore,
the peak of power demand is not at the peak hours com-
pared to the case of without any DR programs. However,
why does the data center not shift the power demand from
the off-peak hours (7 am - 12 pm) to the night hours (9 pm
6 am)? Because the interactive workload and batch jobs are
colocated in the same servers, scheduling the batch jobs may
increase the idle power.

Figure 10(c) shows the case of the data center participat-
ing in the CPP program. During the CPP hour, the data
center needs to avoid using the grid power because the CPP
rate is too high. Therefore, the data center provisions GE
generation and utilizes PV generation during the CPP hour.
A larger amount of PV generation is used compared to the
case without DR programs. The power demand manage-
ment schedules the batch job workload to react to the shape
of PV generation, which has the peak in the afternoon.

We study the power profile of the data center with re-
spect to two IBR levels which are level 1 (50kW) and level
2 (100kW) as in Figure 10(d). The electricity prices of ex-
ceeding the level 2 grid power is $0.5/kWh, more expensive
than the level 1, i.e., $0.2/kWh. The idea of IBR is to reg-
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Figure 10: The power profiles of the data centers participating in different DR programs.
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Figure 11: Impacts of DR programs on capacities, expenditures, and emissions of the data center.

ulate the power demand under the two load levels. As we
expected, the data center adapts to the IBR program very
well. In particular, the grid power is mostly under the level
1 and never exceeds the level 2. In order to provision power
under the IBR levels, the data center actually requires a lot
of PV generation and GE generation. The batch job work-
load is shifted to the high peak of PV generation during day
time. On the other hand, GE is used in the whole day.

Figure 10(e) presents the operation of the data center in
the SR program. In the SR program, the data center can
earn financial benefits if it reduces the power demand com-
pared to the baseline consumption. In this simulation, the
baseline consumption is the power consumption of the data
center without participating in any DR program. We run
the optimization framework to minimize the total cost for
the data center in the DR program. During the SR hour,
the data center reduces 30% their grid power consumption
as compared to the case without DR programs.

In the wholesale market, it is assumed that the data cen-
ter provisions 200kWh every hour at a cheaper price (0.05
$/kWh) than the base price (0.056 $/kWh). The power pro-
file of data center is in Figure 10(f). It is seen that the power
demand is flattened to follow the pre-purchased electricity
in the wholesale market. The data center significantly re-
duces its peak compared to the case without DR programs,
which can be very beneficial to reduce the peak demand of
the electricity grid.

The comparison of the six cases of data center demand re-
sponse in terms of capacities, costs, and emissions are shown
in Figures 11. In general, the proposed framework enables
the data center to adapt to each DR program very well.
The data center increases the capacities of GE and/or PV
under the ToU, CPP, IBR, and SR programs as in Figure
11(a). Hence, the DR programs can indirectly change the

capacity planning of data centers. In Figure 11(b), the to-
tal costs of the data center increase in the ToU, IBR, and
CPP programs but they decrease in the SR program and the
wholesale market. The lowest expenditure is in the whole-
sale market because of the cheap electricity price but it re-
leases the most emissions as the grid power is generated by
mainly using the fossil fuel. Participating in ToU, IBR, and
CPP programs causes the data center spends slightly more
expenditures, but data centers can remarkably reduce emis-
sions by using other environmentally friendly power sources
rather than the grid power.

Key insights: The proposed framework enables data
centers to adapt to DR programs very well. (i) The data
center uses a lot of PV and/or GE generation under ToU,
IBR, CPP, and SR. (ii) While the total cost of the data cen-
ter slightly increases in the ToU, CPP, and IBR programs,
it can be reduced in the SR program and wholesale market.
(iii) Data centers participating in ToU, IBR, CPP, and SR
programs can cut down their emissions by provisioning other
power sources rather than grid power.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose an optimization framework for

joint capacity planning and operational management that
not only plans the capacities for sustainable data centers
but also takes the operational management into account.
The proposed framework can actually cut down significant
expenditures by integrating the optimizations on both sup-
ply and demand sides. Numerical evaluation based on real-
world case studies highlights the benefits to data center op-
erators by using the proposed framework. In particular, it
can achieve up to 50% cost savings and 75% emission reduc-
tions.

There are a lot of interesting future directions. For in-



stance, tackling the stochastic characteristics of workload
and renewable energy in capacity planning and operational
management is challenging and important. Another promis-
ing direction is to extend the framework from a single data
center to the system of geographically distributed data cen-
ters, which has more flexibility on planning their IT capac-
ities because the workload demand can be shifted among
different data centers. These can result in further cost and
emission reductions.
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